Technical Information TI 030D/24/ae

Quality made by Endress+Hauser

ISO 9001

Coriolis Mass Flow Measurement System promass 63

Simultaneous measurement of mass, density and temperature for a broad range of applications for liquids and gases

Flexible system

- The system can be customized to each application
- · Wide choice of materials for process connections and measuring tubes, compatible with the fluid
- · Simple and cost-effective installation
- Transmitter housing and display can be rotated to fit the flow meter orientation

Safe operation

- Self-draining measuring tubes
- Secondary containment vessel as ٠ standard
- · High electromagnetic compatibility (EMC)
- Self-monitoring with alarm function
- EEPROM stores data on power failure (no batteries required)
- ISO 9001 manufacturer, quality assured
- FM Approved Class I, Division 1 and 2
- 3A and FDA authorized versions

Accurate measurement

- · Measurement accuracy for liquids:
 - Mass flow ± 0.1%
 - Volume flow $\pm 0.15\%$
- · Measurement accuracy for gases: Mass flow ± 0.5%
- 1000 : 1 operable flow range
- · Excellent repeatability

Easy to operate

- · Menu-driven operation of all parameters
- Two-line illumintated display, all important variables easily read
- Touch control, programming without opening the housing

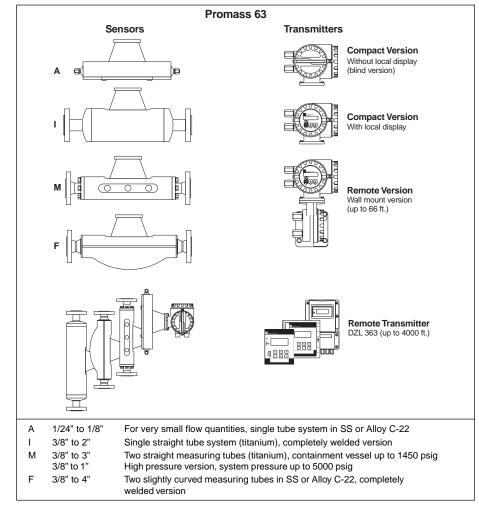
Install anywhere

- Compact design
- · Insensitive to plant vibration
- Rugged and shock-proof, surfaces resistant to acids and alkalis
- NEMA 4X protection for compact and remote version
- · Measurement independent of fluid characteristics

The Power of Know How

Promass Measuring System

Areas of application


The Promass system measures the mass and volumetric flowrates of fluids with widely differing characteristics:

- · Chocolate, condensed milk, syrup
- · Oils, fats
- Acids, alkalis
- Varnishes, paint
- · Suspensions, etc.

The system also measures the density and temperature of fluids in order to calculate other parameters such as volumetric flow, solids content or density units (standard density °Brix, °Baumé, °API). The Promass 63, is used wherever mass flow measurement is of critical importance:

- Mixing and batching of raw materials
- Process control
- Measurement of quickly changing densities
- Control and monitoring of product quality

The advantages of this measurement process are demonstrated by its successful use in food processing, the pharmaceutical industry, the chemical and petrochemical industries, waste disposal, energy production, gas applications, etc.

The modular Promass 63 measuring system.

Division 1 hazardous information is available from your Endress+Hauser Sales Representative.

Refer to Technical Specifications, Pages 18 - 22

Measuring system

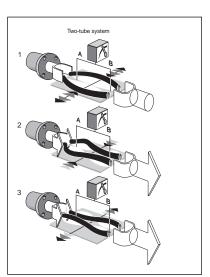
The measuring system consists of:

- Promass 63 transmitter
- Promass A, I, M or F sensor
- Optional DZL 363 remote transmitter (refer to TI 041D/24/ae)

The Promass measuring system is mechanically and electronically designed for maximum flexibility with the transmitters and sensors being combined in any variation. The wide range of materials and process ocnnections (VCO, NPT, Swagelok, ANSI flanges and Tri-Clamp[®]) ensure that the measuring system can be adapted to both plant and process conditions.

The transmitter housing and display can be rotated for ease of reading and operation in any orientation. The DZL 363 remote transmitter can be mounted up to 4000 feet from the sensor in a control room or field mounted enclosure.

Sensor Function


Measuring principle

The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present when both translational (straight line) and rotational (revolving) movement occur simultaneously.

$$\mathbf{F}_{c}^{\mathbb{R}} = 2 \text{ x Dm} (\mathbf{w} \times \mathbf{v})$$

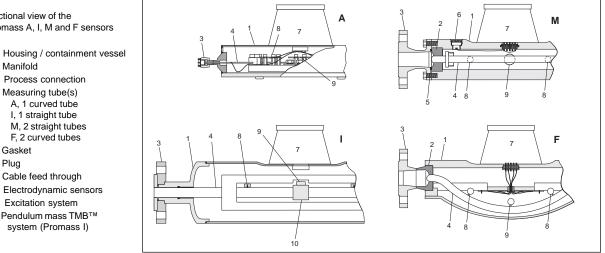
- F_c = Coriolis force
- Dm = mass of moving body
- ® W ® V = angular velocity
 - = radial velocity in a rotating or oscillating system

The amplitude of the Coriolis force depends on the moving mass Dm, its velocity v in the system and therefore its mass flow.

The Promass uses an oscillation instead of a constant angular velocity $\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptscriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}}{\overset{\scriptstyle{(R)}}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}}{\overset{\scriptstyle{(R)}}}{\overset{\scriptstyle{(R)}}}}{\overset{\scriptstyle{(R)}}}}}{\overset{\scriptstyle{($ two parallel measuring tubes, with fluid flowing through them, are oscillated in anitphase, much like a tuning fork.

The Coriolis forces produced at the measuring tube(s) cause a phase shift in the tube oscillation (see Figure on left):

- When there is zero flow, i.e., with the fluid standing still, both phases are equal (1 : no phase difference)
- · When there is mass flow, the tube oscillation is decelerated at the inlet (2) and accelerated at the outlet (3).


As the mass flowrate increases, the phase difference also increases (A-B). The oscillations of the measuring tube(s) are determined using electrodynamic sensors at the inlet and outlet. The measurement principle operates independent of temperature, pressure, viscosity, conductivity or flow profile.

Density measurement

The measuring tube(s) are continuously excited at their resonant frequency. As the mass and therefore the density of the oscillating system changes (measuring tubes and fluid), the vibrating frequency is readjusted. The resonant frequency is thus a function of the density of the fluid and enables the processor to calculate density. This density information can be provided as an output signal.

Temperature measurement

The temperature of the measuring tubes is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output.

Balanced Measuring System

Two-tube systems (Promass M, F)

The system balance is ensured by the two measuring tubes vibrating in antiphase.

Single tube systems (Promass A, I)

For single tube systems, other design solutions are necessary for system balance compared to the twotube systems.

Promass A.

For Promass A, an internal reference mass is used for this purpose.

Promass I:

For Promass I, the system balance necessary for flawless measurement is generated by exciting an eccentrically located, counteroscillating pendulum mass.

This TMB[™] (Torsion Mode Balanced) system is patented and guarantees accurate measurement, also with changing process and ambient conditions

The installation of Promass I for this reason is just as easy as with two-tube systems! Special fastening measures before and after the meter are therefore not necessary.

> Sectional view of the Promass A, I, M and F sensors

- 1 Housing / containment vessel
- 2 Manifold
- 3
- 4 Measuring tube(s) A. 1 curved tube I, 1 straight tube M, 2 straight tubes F, 2 curved tubes
- 5 Gasket
- Plug 6
- 7 Cable feed through
- 8 Electrodynamic sensors
- Excitation system 9
- 10 Pendulum mass TMB™ system (Promass I)

Transmitter Function

Function of the Promass 63

The Promass transmitter converts the measured values coming from the sensor into standardized output signals. The following outputs are avialable for these signals:

- Current output (with HART[®] protocol)
- Pulse/frequency output or 2nd current output
- Relay 1 (e.g., error output)
- Relay 2 (e.g., limit value)
- · Auxiliary input, can be configured

Display

Promass 63 has a two-line, illuminated LCD display so that one or two of the following measured values can be read simultaneously:

- Actual flowrate of mass, volume, standardized volume as well as % content of target/carrier liquid with multiphase media
- Density (e.g., g/cc, SG, °Brix, °API)
- Temperature in °F or °C
- · Totalized flow

The following are also displayed:

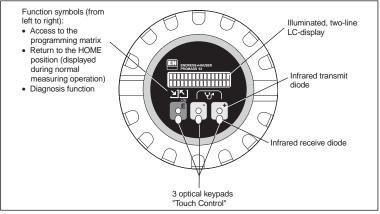
- Alarm messages (process faults)
- Error messages (instrument faults)
- Status messages
- · Programming messages

Communications

The Promass 63 can communicate with higher level control systems using an application-specific interface:

- Direct communication with personal computers and the Endress+Hauser Rackbus environment (Modbus, Profibus, Fipbus) is possible via a Rackbus RS 485 interface
- Current output is available for the HART[®] protocol using SMART technology
- Promass 63 is also available as PROFIBUS PA or DP for direct connection to process control systems, segment couplers or Commutec II.

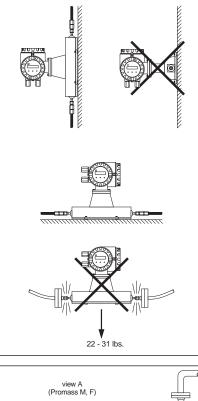
 Remote operation using these interfaces can also be carried out with the Endress+Hauser Commuwin II program. Detailed information is available from your local sales representative.

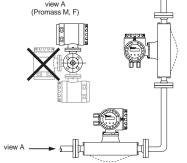

Operation

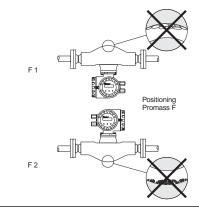
With the Endress+Hauser menu-driven operation, configuration is very simple. With only three keys, parameters and functions can be specifically chosen and modified, including:

- Display of process variables
- Functions of current output 1 or 2
- Functions of two totalizers
- Functions of the pulse/frequency output
- Relay functions
- Batching functions with integrated counter
- · Communications parameters
- Process parameters such as low flow cutoff, empty pipe detection, etc.

Operational safety


- The Promass measuring system fulfills the safety requirements according to EN 61010
- The Promass measuring system fulfills all general requirements for electromagnetic compatibility (EMC) IEC 801/VDE 0843 and NAMUR recommendations
- Extensive self-monitoring of the measuring system gives complete operational safety
- Any errors occuring are separately indicated via the configurable relay 1 output
- On power failure, all measuring system data are safely stored in the EEPROM (no batteries required)
- All outputs are electrically isolated from the power circuit, the measuring loop and from each other




Mounting Guidelines

The Promass sensor does not require special fittings or brackets for mounting. External forces are absorbed by the design of the unit, such as the secondary containment vessel.

The high frequency oscillation of the measuring tubes ensures that correct operation of the measuring system is unaffected by plant vibration.

Orientation, Promass I, M, F

Orientation,

Promass A

When mounting, no special precautions need to be taken for turbulence generating devices such as valves, bends, pipe tees, etc., as long as no cavitation occurs.

Orientation (Promass A) *Vertical*

Vertical mounting is recommended with the process material flowing upwards. This allows entrained solids to sink down and gases to rise away from the measuring tube. This also allows the measuring tube to be completely drained during no flow which protects the tubes from solids build-up.

Horizontal

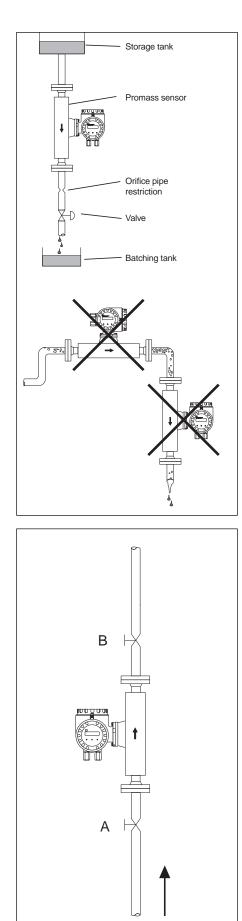
When correctly installed, the transmitter housing is either above or below the piping. This assures that no gas bubbles may collect or solids be deposited in the curved measuring tubes.

Wall and post mounting

The sensor may not be suspended in the piping, that is, without support to avoid excessive stress on the material around the process connection. The sensor housing base plate allows table, wall, or post mounting. The post mounting option requires a special mounting set available from Endress+Hauser.

Orientation (Promass I, M, F) *Vertical*

Vertical mounting is recommended with the process material flowing upwards. This allows entrained solids to sink down and gases to rise away from the measuring tube. This also allows the measuring tube to be completely drained during no flow which protects the tubes from solids build-up.


Horizontal

Promass I sensor (single tube) can be mounted in any orientation horizontally. For Promass M and F, the measuring tubes must lie side by side. When correctly installed, the transmitter housing is either above or below the piping (see view A). The Promass F measuring tubes are curved slightly and must be installed per F1 or F2.

- F1 is not suitable for fluids containing gases.
- F2 is not suitable for fluids containing solids.

5

Mounting Guidelines

Mounting location for vertical piping

Zero point calibration and shut-off valves

Carry out zero point calibration when $V_{meas,tube} = 0$ ft/sec only !

Mounting location

Air or entrained gases in the measuring pipe may cause errors in measurement. Therefore, the following installations are to be avoided:

- Do not install at the highest point of the process piping
- Do not install directly upstream before an unrestricted pipe outlet in a vertical pipe line

Correct installation is still possible using the recommendations shown in the adjacent figure. Restrictions in the piping or an orifice with a smaller cross section than the measuring instrument can prevent the sensor from running empty during measurement.

Nominal diameter (in.)	Æ Orifice / restriction (in.)				
. ,	. ,				
1/24	0.03				
1/12	0.06				
1/8	0.12				
3/8	0.24				
1/2	0.40				
1/2 *	0.60				
1	0.55				
1 *	0.94				
1-1/2	0.87				
1-1/2 *	1.38				
2	1.10				
3	1.97				
4	2.56				
* Full bore 1/2"	, 1" and 1-1/2"				
Bromono Lyorgiono					

Promass I versions

Zero point calibration

Once the sensor has been installed, a zero point calibration should be carried out under process conditions in order to ensure that measurement is accurate. The static zero point calibration is fulfilled using completely filled measuring tubes and at "no flow" with shut-off valves both upstream and downstream of the sensor (or use existing shut-off and slide valves, etc.). An example of this is shown in the adjacent figure.

During normal measurement: Open valves A and B

Zero point calibration **WITH** pumping pressure:

Open valve A Close valve B

Zero point calibration **WITHOUT** pumping pressure: Close valve A Open valve B

Installation Guidelines

System pressure

It is important to avoid cavitation as this can affect tube oscillation. No special measures need to be taken for products which have properties similar to those of water under normal conditions.

With volatile liquids (hydrocarbons, solvents, liquified gases) or other liquids in suction lines, the vapor pressure of the liquid must not drop below a point where the liquid begins to boil. It is also important not to release gases which are found naturally in many liquids. This can be prevented by ensuring that the system pressure is high enough. Ideally, the sensor should be mounted as follows:

- On the pressure side of pumps (avoids low pressure)
- · At the lowest point of a vertical pipeline

Corrosion resistance

With corrosive liquids, the chemical resistance of all wetted parts such as measuring tubes, gaskets and process connections must be thoroughly checked. This also applies to the liquids used for cleaning the Promass sensor.

Tracing, thermal insulation

With certain media (chocolate, liquified gases, etc.) heat transfer at the sensor must be avoided. A wide range of materials can be used for thermal insulation.

Heating can be provided either electrically (heat tracing) or supplied by copper tubes with heated water or steam. Heating jackets for heat tracing are available for all sensors.

Caution!

Ensure that the meter electronics are not overheated. The connector between the sensor and the transmitter housing as well as the connection housing of the remote version must be protected from high temperatures.

Fluid temperature / orientation

To ensure that the permitted ambient temperature range for the transmitter is not exceeded ($-15^{\circ}F$ to + $140^{\circ}F$) positioning is recommended as follows:

High fluid temperature

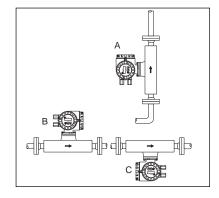
- · Vertical piping, position A
- · Horizontal piping, position C

Low fluid temperature

- Vertical piping, position A
- · Horizontal piping, position B

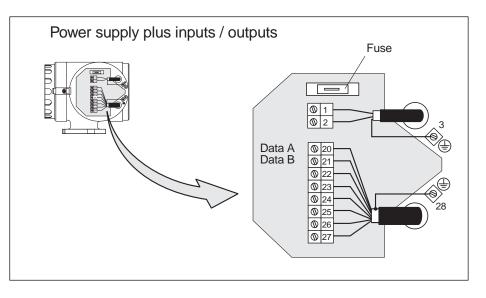
Full scale value / meter size

The most suitable meter size is selected by taking into account the measuring range required and the permitted pressure drop.


	Full Scale R	ange (lb/min)
Nominal Size (in.)	Liquid	Gas
1/24	0 to 0.73	0 to 0.36
1/12	0 to 3.66	0 to 1.83
1/8	0 to 16.5	0 to 4.58
3/8	0 to 73.3	0 to 7.33
1/2	0 to 240	0 to 23.8
1/2 *	0 to 660	0 to 66.6
1	0 to 660	0 to 66.6
1 *	0 to 1653	0 to 166
1-1/2	0 to 1653	0 to 166
1-1/2 *	0 to 2573	0 to 256
2	0 to 2573	0 to 256
3	0 to 6600	0 to 660
4	0 to 11,667	0 to 1160

- * Full bore 1/2", 1" and 1-1/2" Promass I versions.
- The minimum recommended full scale value is about 1/20 of the indicated maximum values above
- With most applications, the optimum is considered to be between 20 to 50% of the maximum full scale value
- With abrasive fluids, e.g. fluids containing solids, a lower full scale value should be used (flow velocity < 3 ft/s)
- For gas applications, the flow velocity in the tubes should not exceed half of the sonic speed (Mach 0.5 in that gas)

"Applicator" design software


All important instrument data is contained in the Endress+Hauser software program in order to optimize the design of the measuring system. The software is used for the following calculations:

- Nominal diameter of the sensor with fluid characteristics such as viscosity, density, etc.
- Pressure loss downstream of the measuring point
- Converting mass flow to volumetric flow, etc.
- Simultaneous display of various meter sizes.
- Determining measuring ranges The Applicator runs on any IBM compatible PC with Windows.

Electrical Connections

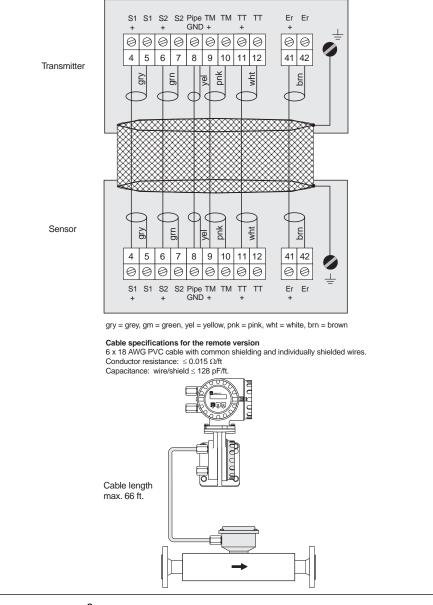
Note! Depending on the ordering information, the transmitter electronics contain different boards: - HART[®] - RS 485 - 2 Current outputs - PROFIBUS PA - Ex i - DZL (for connection to Procom DZL 363 transmitter) Technical information on instruments with Explosion Proof approvals are given in separate documentation available from Endress+Hauser

	Current, Pulse / Frequency and HART Interface		Serial Interface RS 485 or Auxiliary Input		2 Current Outputs	
3	Ground connecti	on (ground wire)	Ground connection	on (ground wire)	Ground conne	ction (ground wire)
1	L1 (AC) N (AC)	L+ (DC) L- (DC)	L1 (AC) N (AC)	L+ (DC) L- (DC)	L1 (AC) N (AC)	L+ (DC) L- (DC)
20 (+)	Pulse/frequency output		Input / output	RS 485 or auxiliary input A +/- 3 to 30 VDC B -/+ R _i = 1.8 kW	Current output 2	Active, 0/4 to 20 mA R _L < 700 w
22 (+) 23 (-)	Relay 1	Max. 60 VAC/0.5 A AC Max. 30 VDC/0.1A DC can be configured, e.g. failure	Relay 1	Max. 60 VAC/0.5 A AC Max. 30 VDC/0.1A DC can be configured, e.g. failure	Relay 1	Max. 60 VAC/0.5 A AC Max. 30 VDC/0.1A DC can be configured, e.g. failure
24 (+) 25 (-)	Relay 2	Max. 60 VAC/0.5 A AC Max. 30 VDC/0.1A DC can be configured, e.g. limit value	Relay 2	Max. 60 VAC/0.5 A AC Max. 30 VDC/0.1A DC can be configured, e.g. limit value	Relay 2	Max. 60 VAC/0.5 A AC Max. 30 VDC/0.1A DC can be configured, e.g. limit value
26 (+) 27 (-)	Current output 1	active, 0/4 to 20 mA R _L < 700 W With HART protocol: 4-20 mA, R _L ³ 250 W	Current output or Pulse/Frequency output	Active, 0/4 to 20 mA R _L < 700 W Active/passive, f=2Hz to 10kHz Active: 24 VDC, 25 mA (250 mA/20ms) Passive: 30 VDC, 25 mA (250 mA/20 ms)	Current output 1	Active, 0/4 to 20 mA $R_{L} < 700 w$ With HART protocol: 4 to 20 mA, R_{L}^{3} 250 w
28	Ground connecti	on (signal cable shield)	Ground connection	on (signal cable shield)	Ground conne	ction (signal cable shield)

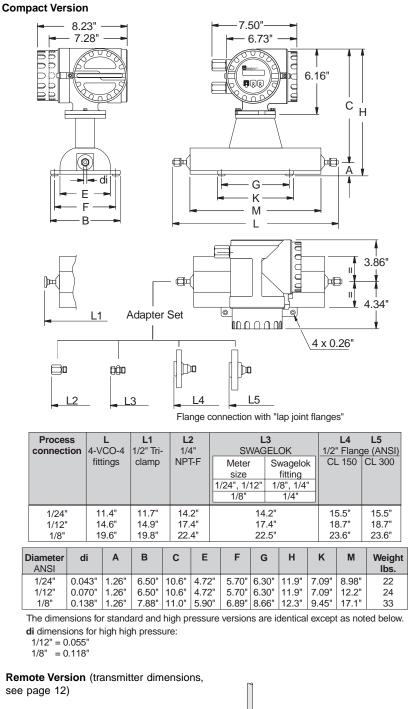
	Intrinsically safe outputs Ground connection (ground wire)		PROFIBUS PA	PROFIBUS PA		P
3			Ground connection (ground wire)		Ground connection (ground wire)	
1 2	L1 (AC) N (AC)	L+ (DC) L- (DC)	L1 (AC) N (AC)	L+ (DC) L- (DC)	L1 (AC) N (AC)	L+ (DC) L- (DC)
20 (+) 21 (-)		Not Used	Not Used		Not Used	
22 (+) 23 (-)		Active, 0/4 to 20 mA R _L < 350 w With HART protocol: 4-20 mA, R _L ³ 250 w	Current output	Active, 0/4 to 20 mA R _L < 350 w	Not used	
24 (+) 25 (-)	Not Used	-	Not Used		Not Used	
26 (+) 27 (-)	Pulse/frequency output	Passive, f=2 Hz to 10 kHz can be used as a NAMUR contact according to DIN 19234	Bus	PROFIBUS PA (EN 50170, Volume 2, PROFIBUS; IEC 1158-2)	Data B Data A	
28	Ground connection	on (signal cable shield)	Ground conne	ection (signal cable shield)	Ground conr	nection (signal cable shield)

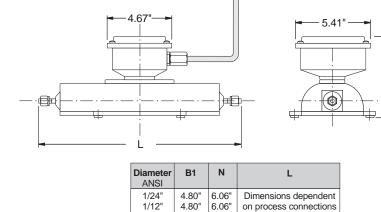
NOTE: Refer to Page 9 for DZL 363 Procom connection

Electrical Connections (Con't.)


	DZL 363 Procom					
3	Ground connection (ground wire)					
	DoS version * Dx version **					
1	1 connected with 24	L1 for AC				
2	2 connected with 25	N				
		L+ for DC power				
		L- supply				
	DoS version	Dx version				
20 (+)	DoS +	Not used				
21 (-)	DoS -					
	DoS version	Dx version				
22 (+)	Not used	Dx + (A data)				
23 (-)		Dx - (B data)				
	DoS version	Dx version				
24 (+)	24 connected with 1	Not used				
25 (-)	25 connected with 2					
26 (+)	Not us	ed				
27 (-)						
28	Ground connection (s	signal cable shield)				

DoS version: The Promass sensor is powered by the Procom DZL 363 transmitter.


** Dx version: The Promass sensor and Procom DZL 363 transmitter are powered with separate power supplies.


The wiring terminal diagram for the DZL 363 is described in TI 061D/24/ae.

Electrical Connections Remote Version

Dimensions Promass 63 A Sensor

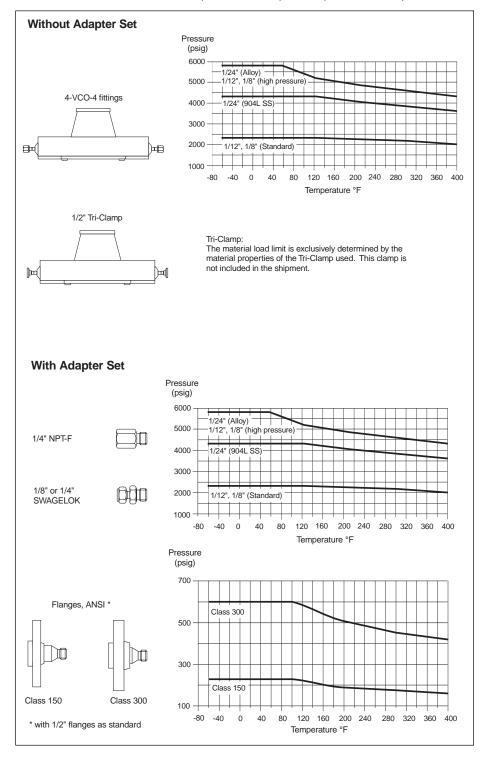
5.20"

6.46"

(see above)

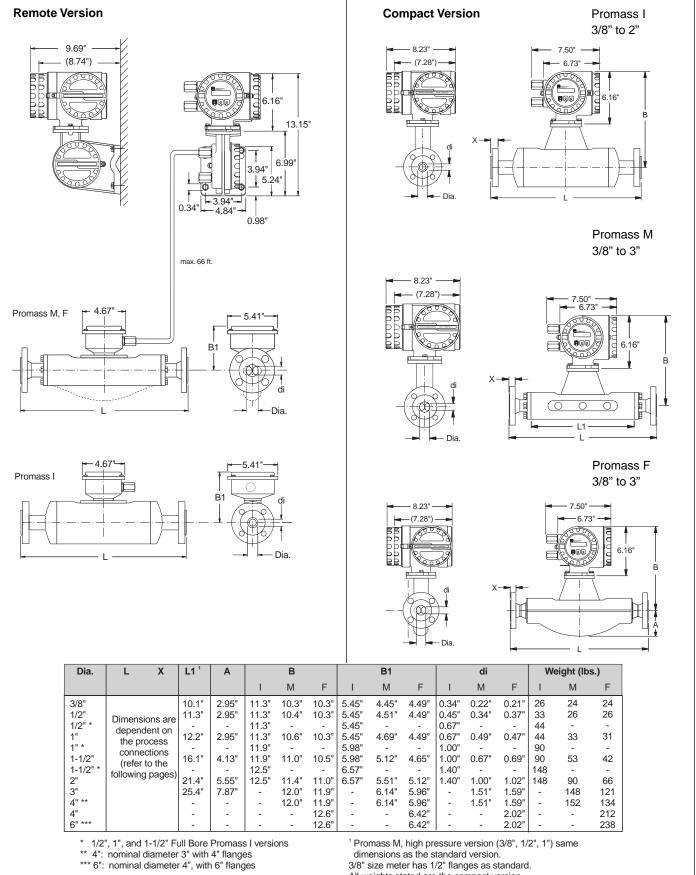
1/8"

B1 N


NOTE !

Dimensions of Division 1 hazardous area approved instruments are given in separate documentation available from Endress+Hauser on request.

Promass 63 A Process Connections Pressure and Temperature Load **Diagrams**


Wetted parts material

Measuring Tube: 4-VCO-4 Fittings: 1/2" Tri-Clamp®	904L SS, Alloy C-22 (N06022) 904L SS, Alloy C-22 (N06022) 904L SS
Adapter Sets:	
- 1/8" or 1/4" SWAGELOK	316 SS
- 1/4" NPT-F	904L SS, Alloy C-22 (N06022)
- Flange, ANSI	904L SS, Alloy C-22 (N06022)
	Lap joint flanges (not wetted) 316L SS
- Gaskets	O-ring in Viton (+5° to + 400°F), EPDM (- 40° to + 320°F); Silicone (- 60° to + 400°F), Kalrez (- 22° to + 400°F)

Material load curves for Promass A process connections

Dimesions Promass 63 I. M and F Sensors

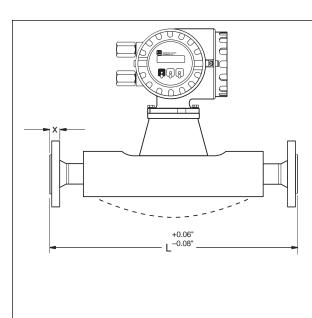
3/8" size meter has 1/2" flanges as standard.

All weights stated are the compact version.

Promass I, M, F ANSI Process Connections

Promass I Wetted Parts:

Titanium Grade 9 No internal gaskets with welded process connections


Promass M Flange Material: Gasket Material:

316L SS, Titanium Grade 2 O-ring in Viton (+ 5° to + 300°F), EPDM (- 40° to + 300°F), Silicone (- 60° to + 300°F), Kalrez (- 22° to + 300°F), FEP encapsulated Viton (- 60° to + 300°F)

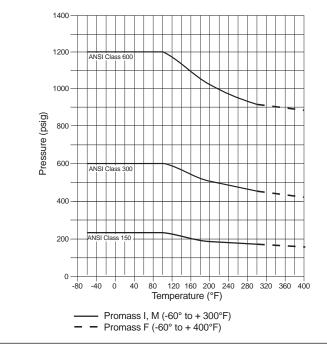
Promass F Wetted Parts:

Wollou Full

316L SS, Alloy C-22 (N06022) No internal gaskets with welded process connections

Promass I							
Dia.	ia. Class 150 / Class 300 Class 600						
ANSI	L	Х	L	Х			
3/8"	15.9"	0.79"	15.9"	0.79"			
1/2"	17.3"	0.79"	17.3"	0.79"			
1/2" *	22.6"	0.79"	22.8"	0.91"			
1"	22.8"	0.91"	22.8"	0.91"			
1" *	27.6"	0.87"	27.8"	0.98"			
1-1/2"	27.9"	1.02"	27.9"	1.02"			
1-1/2" *	32.3"	1.02"	32.5"	1.14"			
2"	32.6"	1.10"	32.6"	1.10"			

^{* 1/2&}quot;, 1", and 1-1/2" Full Bore Promass I versions

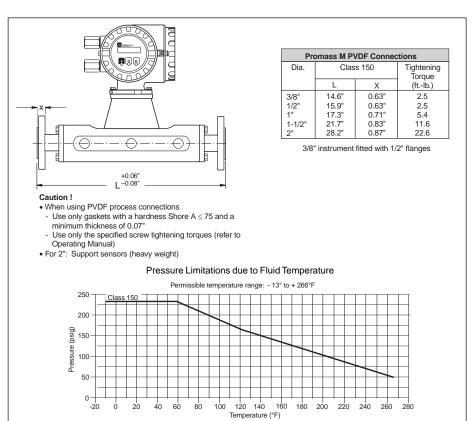

	Promass M / F								
Dia.	Class 150		Class 300		Class 600				
ANSI	L	Х	L	Х	L	Х			
3/8" 1/2" 1" 1-1/2" 2" 3" 4" * 4" 6" **	14.6" 15.9" 17.3" 21.7" 28.1" 33.1" 34.4" 44.4" 46.0"	0.44" 0.44" 0.56" 0.69" 0.75" 0.94" 0.94" 0.94" 1.00"	14.6" 15.9" 17.3" 21.7" 28.1" 33.1" 35.2" 44.4"	0.56" 0.56" 0.69" 0.81" 0.88" 1.12" 1.25" 1.25"	15.7" 16.5" 19.3" 23.6" 29.2" 35.4" - 45.6"	0.81" 0.81" 0.94" 1.13" 1.25" 1.50" - 1.91"			

* 4": nominal diameter 3" with 4" flanges

** 6": nominal diameter 4" with 6" flanges

3/8" size meter has 1/2" flanges as standard.

Pressure Limitations due to Fluid Temperature (316L SS, Alloy C-22)



Maximum process pressure for titanium flanges is temperature independent: 150 lb ANSI: 230 psig 300 lb ANSI: 600 psig 600 lb ANSI: 1200 psig

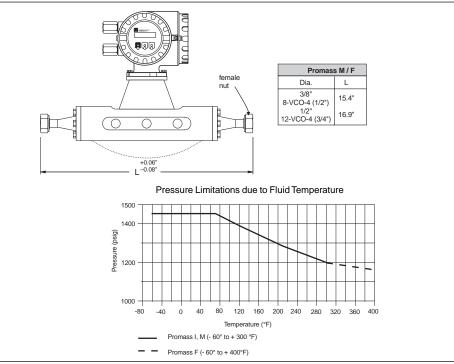
Promass M, PVDF Process Connections

Wetted Parts Materials (ANSI B16.5)

Flange Material: Gasket Material: PVDF (Kynar[®]) O-ring in Viton (+ 5° to + 300°F), EPDM (- 40° to + 300°F) Silicone (- 60° to + 300°F), Kalrez (- 22° to + 300°F)

Promass I, M, F VCO Process Connections

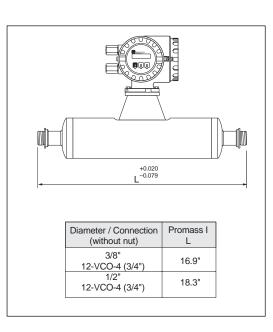
NOTE: Refer to Page 15 for Promass I diagram.


Promass M

Flange Material: Gasket Material: 316L SS See data above

Promass F

Wetted Parts: 904L SS


No internal gaskets with welded process connections

Promass I VCO Process Promass I

Connection Material: Gasket Material:

Titanium Grade 2 No internal gaskets with welded process connections

Promass I, M, F Sanitary Process Connections

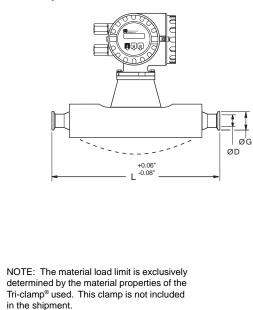
Connections

Promass I

Promass M

Wetted Parts:

Titanium Grade 2 No internal gaskets with welded process connections

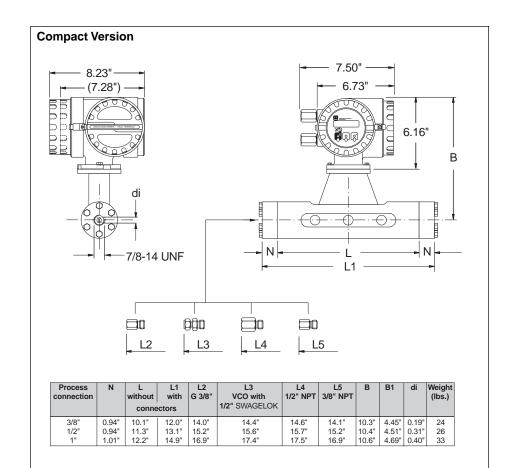

Tri-clamp Material: 316L SS Gasket Material: Flat gaskets, EPDM (- 40° to + 300°F), Silicone (- 60° to + 300°F)

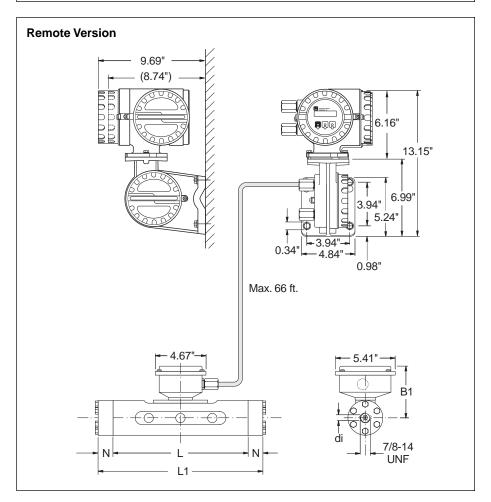
Promass F

Wetted Parts:

316L SS No internal gaskets with welded process connections

Tri-Clamp[®]

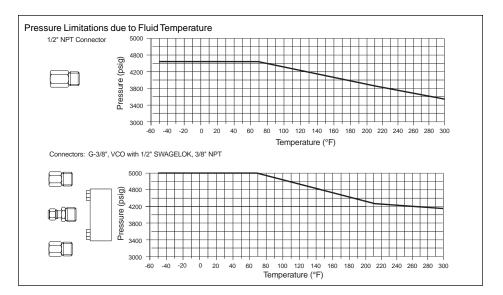

Promass M / F							
Dia.	Clamp	L	ØG	ØD			
3/8"	1/2"	14.4"	0.98"	0.37"			
3/8"	1"	14.4"	1.98"	0.87"			
1/2"	1/2"	15.7"	0.98"	0.37"			
1/2"	1"	15.7"	1.98"	0.87"			
1"	1"	17.1"	1.98"	0.87"			
1-1/2"	1-1/2"	22.0"	1.98"	1.37"			
2"	2"	28.3"	2.52"	1.87"			
3" M	3"	31.5"	3.58"	2.87"			
3" F	3"	35.4"	3.58"	2.87"			
4" *	4"	44.4"	4.68"	3.83"			


3/8" and 1/2": With 1" connections as standard. * 4" only available for Promass F

3/8" 1/2" 16.8" 0.98" 0 3/8" 3/4" 16.8" 0.98" 0 3/8" 3/4" 16.8" 1.98" 0 3/8" 1" 16.8" 1.98" 0	ØD .37" .63"
3/8" 3/4" 16.8" 0.98" 0 3/8" 1" 16.8" 1.98" 0	.63"
3/8" 1" 16.8" 1.98" 0	
	07"
1/2" 1/2" 18.2" 0.98" 0	.87"
	.37"
1/2" 3/4" 18.2" 0.98" 0	.63"
	.87"
1/2" * 3/4" 23.7" 0.98" 0	.63"
1" 1" 23.7" 1.98" 0	.87"
1" * 1" 28.7" 1.98" 0	.87"
1-1/2" 1-1/2" 28.7" 1.98" 1	.37"
1-1/2" * 1-1/2" 33.4" 1.98" 1	.37"
2" 2" 33.5" 2.52" 1	.87"

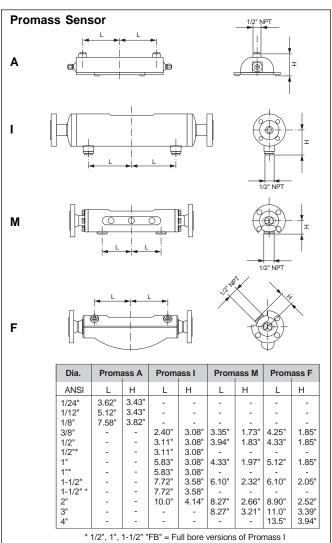
Tri-Clamp® Dimensions

Promass 63 M High Pressure Version Dimensions



Promass 63 M High Pressure Version Pressure Limitations

Wetted parts material


Measuring Tube: Connectors: Fittings: Gasket Material: Titanium Grade 9 316L SS 316 SS O-rings in Viton (+ 5° to + 300°F), Silicone (- 60° to + 300°F)

Purge Fittings (Pressure Monitoring)

NOTE !

Internal 1/2" NPT plugs are provided for Promass 63 purge connections (if specified). Plugs are installed to prevent dry nitrogen gas from leaking out. Plugs are to be removed ONLY if the secondary containment section is immediately filled with a dry inert gas.

Technical Data

		Application						
Instrument name		suring system "Promass 63"						
Instrument function		volumetric flow measurement	of liquids and gases in					
	closed pipi							
Measuring principle	1	Function and System Design Mass flow measurement according to the Coriolis measuring principle						
measuring principle		(see pages 7-8)						
Measuring system		family "Promass 63" consisti	ng of:					
		: Promass 63						
		omass A, I, M and F						
		 Promass A 1/24", 1/12", 1/8" (DN 1, 2, 4) and 1/12", 1/8" (DN 2, 4) (high pressure version) Single tube system in SS or Alloy C-22 						
		s I 3/8", 1/2", 1", 1-1/2", 2" ([
	(complet	ely welded version) Straight						
	titanium							
		15) "FB, 1" (DN 25) "FB", 1- with a higher full scale value						
		s F 3/8", 1/2", 1", 1-1/2", 2", 3						
	80, 100)	(completely welded version)	Two slightly curved					
			(only for 3/8" - 3" / DN 8 - 80)					
		s M 3/8", 1/2", 1", 1-1/2", 2", 3 ight measuring tubes in titani						
		psi (100 bar). 3/8", 1/2", 1" (I						
		for operating pressures up to	5000 psi (350 bar).					
		ns are available:						
	Compace Remote	version, maximum 66 feet (2	0 m)					
	- Remote	Input variables	0 11)					
Measured variables	Mass flo	w rate (is proportional to the	phase difference fo the two					
	sensors on the measuring tube which detect differences in it							
		oscillation, see page 3)						
	 Fluid density (is proportional to the resonance frequency of the measuring tubes) 							
		nperature (is measured with	temperature sensors)					
Measuring range		Ranges for full scal	e values					
	Size D		Gas					
		$\dot{m}_{min(L)}$ to $\dot{m}_{max(L)}$	$\dot{m}_{_{min(L)}}$ to $\dot{m}_{_{max(L)}}$					
	1/24" 1 1/12" 2	(J	The full scale depends on the density of the gas. The full scale					
	1/8" 4	0 to 16.5 lb/min (0 to 450.0 kg/h)	value can be determined with the following formula:					
	3/8" 8 1/2" 1		$\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \rho_{(G)}}{x \cdot 1.6}$					
	1/2" * 1	5 * 0 to 666 lb/min (0 to 18.0 t/h)	m _{max (G)} = Full scale value gas (t/h)					
	1" 2	5 0 to 666 lb/min (0 to 18.0 t/h) 5 * 0 to 1650 lb/min (0 to 45.0 t/h)	$\dot{m}_{max(L)}$ = Full scale value of liquid (t/h)					
	1-1/2" 4	0 0 to 1650 lb/min (0 to 45.0 t/h)	(value from table) $\rho_{(G)} = gas density (kb/m3)$					
	1-1/2" * 4 2" 5	0 * 0 to 2570 lb/min (0 to 70.0 t/h) 0 to 2570 lb/min (0 to 70.0 t/h)	(at operating condition)					
	3" 8	0 0 to 6600 lb/min (0 to 180.0 t/h)	x = constant (kg/m3) Promass A, x = 20					
	4" 1	00 0 to 11,667 lb/min (0 to 350.0 t/h)	Promass I, M, F x = 100					
	* 1/2	", 1", 1-1/2" "FM" = Full Bore versi	ons of Promass I					
		or calculating a gas full scale:						
			= 100					
		Nominal dia. 2" (DN 50) ® 70 from table above)) t/h (full scale value liquid					
		with a density of 60.3 kg/m ³ (at 68°F) and 725 psi					
		$\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \cdot \rho_{(G)}}{x \cdot 1.6} - \frac{70 \cdot 60.3}{100 \cdot 1.6}$	= 26.4 t/h					
) : 1 This enables totalizer va	lues to be accurately					
Operable flow range	Up to 1000 : 1 This enables totalizer values to be accurately determined even in pulsating systems, e.g. reciprocating pumps.							
Operable flow range	determined	$V = 3 \text{ to } 30 \text{ VDC}, \text{ R}_i = 1.8 \text{ kW}$						
Auxiliary input	V = 3 to 30							
	V = 3 to 30 Configurab	le for: zero point adjustment						
Auxiliary input	V = 3 to 30 Configurab	le for: zero point adjustment set, batching or full scale swi						
Auxiliary input (with RS 485 board)	V = 3 to 30 Configurab totalizer re	le for: zero point adjustment set, batching or full scale swi Accuracy						
Auxiliary input	V = 3 to 30 Configurab totalizer re • <i>Relay o</i>	le for: zero point adjustment set, batching or full scale swi Accuracy	tching.					
Auxiliary input (with RS 485 board)	V = 3 to 30 Configurab totalizer re • <i>Relay o</i> Maximu via a jur	ble for: zero point adjustment set, batching or full scale swi Accuracy utput 1	tching. /DC / 0.1A Either NC or NO I, NO). Configurable for					

Output variables continued						
Output signal (con't.)	 <i>Relay output 2</i> Maximum 60 VAC / 0.5A or max. 30 VDC / 0.1A Either NC or NO via a jumper available (factory setting, NC). Configurable like relay 1 except "failure" and "batch contact". <i>Current output 1 and 2</i> 0/4 to 20 mA (according to NAMUR recommendations), R_L <700w freely assignable t different measured values, time constant freely selectable (0.01 to 100.00 seconds), full scale value selectable, temperature coefficient typical 0.005% of full scale per °C, HART® protocol via current output 1 only. <i>Pulse/Frequency output</i> Freely assignable to one flow variable, active/passive selectable; active, 24 VDC, 25 mA (250 mA during 20 ms), R_L > 100w; passive, 30 VDC, 25 mA (250 mA during 20 ms) Frequency output: f_{End} selectable up to 10 kHz, On/Off ratio 1:1, pulse width maximum 10 seconds Pulse output: pulse weighting adjustable, pulse polarity adjustable pulse width adjustable (50 ms to 10 s) above frequency of 1/_(2 x pulse width) the On/Off ratio is 1:1 					
Signal on alarm	 Current Pulse/fre Relay 1 	output equence ® de-	In the second	It has been cleared selectable re mode selectable figured to "FAILURI power supply failu	_ "	
Load	R _L < 700w					
Creep suppression	Switch poi	nts for	low flow selecta	ble. Hysteresis, -5	0%	
	-		Accuracy			
Reference conditions	 Error limits based on ISO/DIS 11631 68° to 86°F (20° to 30°C), 29 to 58 psi (2 to 4 bar) Calibration rig based on national standards Zero point calibrated under operating conditions Field density calibration carried out (or special density calibration) 					
Measured error	 Massflow rate (liquids): Promass A, M, F ±0.10%±[(zero stability / flow rate) x 100]% of rate Promass I ±0.15%±[(zero stability / flow rate) x 100]% of rate Mass flow rate (gas): Promass A, M, F ±0.50%±[(zero stability / flow rate) x 100]% of rate Promass I ±0.50%±[(zero stability / flow rate) x 100]% of rate Volume flow rate (liquids): Promass A, M ±0.25%±[(zero stability / flow rate) x 100]% of rate Volume flow rate (liquids): Promass A, M ±0.25%±[(zero stability / flow rate) x 100]% of rate Promass I ±0.50%±[(zero stability / flow rate) x 100]% of rate Promass F ±0.15%±[(zero stability / flow rate) x 100]% of rate Promass F ±0.15%±[(zero stability / flow rate) x 100]% of rate Promass F ±0.15%±[(zero stability / flow rate) x 100]% of rate Promass F ±0.15%±[(zero stability / flow rate) x 100]% of rate Promass F ±0.15%±[(zero stability / flow rate) x 100]% of rate Promass F ±0.15%±[(zero stability / flow rate) x 100]% of rate Promass F ±0.15%±[(zero stability / flow rate) x 100]% of rate 					
	Dia. 1/24" 1/12" 1/8" 3/8" 1/2" 1/2"* 1"* 1-1/2"* 2" 3" 4" -1/2,1",1	DN. 1 2 4 8 15 15* 25* 40 40* 50 80 100 -1/2" "FB"	Max. full scale Ib/min (kg/h) 0.73 (20) 3.7 (100) 16.5 (450) 73.5 (2000) 238 (6500) 660 (18000) 1650 (45000) 1650 (45000) 2570 (70000) 2570 (70000) 6600 (180000) 11667 (350000) = Full Bore Promass Lyers	Zero stability Promass A, M, F Ib/min (kg/h) 0.000036 (0.0010) 0.00018 (0.0050) 0.0008 (0.0225) 0.004 (0.100) 0.012 (0.325) N/A 0.33 (0.900) N/A 0.083 (2.250) 0.129 (3.500) 0.129 (3.500) 0.330 (9.000) 0.514 (14.00)	PromassI Ib/min (kg/h) N/A N/A 0.0074 (0.200) 0.3822 (0.650) 0.0661 (1.800) 0.0661 (1.800) 0.1653 (4.500) 0.1653 (4.500) 0.2572 (7.000) 0.2572 (7.000) N/A N/A	

	1_		curacy c				
Measured error (con't.)			-		ring uncerta	-	
	Promass F \pm 0.10% calibration \pm [zero stability / flow rate) x 100]% of rate: 1" (DN 25), Q = 132 lb/min (3.6 th/h / 3600 kg/h):						
	Measured error (e) $\pm 0.1\% \pm \frac{0.33 \text{lb/min}}{132 \text{ lb/min}} \times 100 = \pm 0.125\%$						
	Density:Standard calibration (density calibration in the field):						
		Promass F ± 0.0005 g/cc					
		Promass M, A ± 0.001 g/cc					
	Promass I ± 0.002 g/cc						
		 Special calibration (optional): Calibration range = 0.8 to 1.8 g/cc, 40 to 175°F (5° to 80°C) Promass F ± 0.001g/cc 					
	Proma						
	Proma Proma		A	± 0.002 g ± 0.004 g			
	Tempera			± 0.004 g			
			M, A, I		.003 x (T-32	,	
				$(T = fluid = 0.5°C \pm 0.5°C \pm$	temperature	e in °F)	
					temperature	e in °C)	
Process effects	Proce	ss ter	nperature	•		,	
						error due to	
					way from t as carried	he temperat	ture at
						minal flow ra	ate / °C
			essure eff				
				•		ect on accur	
					b of rate / p	re away froi si)	
	Diam				ow rate		
					f rate / psi		
	ANSI	DN.	Promass A	Promass I	Promass M	Promass MP	Promass F
	1/24"	1	none none	-	-	-	-
	1/8"	4	none	- 0.0004	- 0.0006	-	-
	3/8"	8 15	-	0.0004	0.0005	0.0004	none
	1/2" *	15 *	-	0.0004	-	-	-
	1"	25 25 *	-	0.0004 none	0.0006	0.0002	none
	1-1/2"	40	-	none	0.0003	-	-0.0002
	1-1/2" * 2"	40 * 50	-	0.0004	- none	-	-0.0005
	3"	80	-	-	none	-	-0.0006
	4"	100	-	-	-	-	-0.0008
	* 1/2", 1", 1	-1/2" "FB"	= Full Bore Proma	ss I versions			
		-	erating co		;		
Installation conditions			ertical or h		otiona rofa	r to pages 9) onword
Inlet / outlet sections					let and out		o niwaru.
Connection cable length			-				
Ambient conditions	Transmit	ter an	d sensor:	-13° to +1	40°F (-25° 1	to +60°C). \	
						-40° to +60°	
						tain installat tted ambien	
						ee page 11	
	An all	weath	ner cover s	hould be u	used to prot	tect the hour	sing from
						is is especia ient tempera	
	 If amb 	ient te	emperature	is below	-13°F (-25°	C), a versio	n with a
	displa	y is no	ot recomm	ended.	``		
Storage temperature			(-40° to +	,		00500	
Degree of protection Shock resistance			EMA 4X; s EC 68-2-3		MA 4X (EN	60529)	
		-			to IEC 68-2	-6	
Vibration resistance		Up to 1 g, 10 to 150 Hz according to IEC 68-2-6 According to EN 50081 Part 1 and 2 / EN 50082 Part 1 and 2 as					
Vibration resistance Electromagnetic		-					d 2 as

		tions continued				
Process conditions	Fluid temperature:					
	Sensor					
		⊦400°F (-50° to +200°C) ⊦300°F (-50° to +150°C)				
		-300°F (-50° to +150°C)				
	Promass F -60° to +400°F (-50° to +200°C)					
	 Gaskets 					
		400°F (-15° to +200°C)				
	EPDM -40° to -	+320°F (-40° to +160°C)				
		+400°F (-50° to +200°C)				
		+410°F (-30° to +210°C)				
		lated Viton -60° to +400°F (-50° to +200°C)				
	Pressure:Promass A					
	Fittings	max. 2320 psi (160 bar), standard version				
		max. 5800 psi (400 bar), high pressure				
		version				
	Flanges	ANSI CL 150, CL 300 / DIN PN 40 / JIS 10K				
	Containment vessel	375 psi (25 bar)				
	Promass I					
	Flanges	ANSI CL 150, CL 300, CL 600 / DIN PN 40,				
	Containment vocas	to 100 / JIS 10K, 20K, 40K, 63K 375 psi (25 bar), optional 600 psi (40 bar)				
	Promass M					
	Flanges	ANSI CL 150, CL 300, CL 600 / DIN PN 40,				
		to 100 / JIS 10K, 20K, 40K, 63K				
	Containment vessel	600 psi (40 bar), optional 1500 psi (100 bar)				
	Promass M (high pr	essure version)				
		nnector fittings; max. 5000 psi (350 bar)				
	Containment vessel	1500 psi (100 bar)				
	Promass F					
	Flanges	ANSI CL 150, CL 300, CL 600 / DIN PN 40				
	Containment vessel	to 100 / JIS 10K, 20K, 40K, 63K 3/8" to 3" (DN 8 to 80); 375 psi (25 bar)				
	Containment vesser	4" (DN 100); 250 psi (16 bar)				
		3/8" to 2" (DN 8 to 50); optional 600 psi				
		(40 bar)				
	Caution!					
	The material load cu	rves (pressure / temperature diagrams) for				
Pressure loss	The material load cu all process connection	ons can be found on pages 14, 16, 17 and 20.				
Pressure loss	The material load cu all process connection Dependent on nominal	ons can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult				
Pressure loss	The material load cu all process connection Dependent on nominal	ons can be found on pages 14, 16, 17 and 20.				
	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of	bins can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction				
Design / dimensions	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru	bins can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a	bins can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21				
Design / dimensions	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • <i>Transmitter housing</i>	ons can be found on pages 14, 16, 17 and 20. diameter and sensor type. consult oplicator PC software to determine pressure construction 21 and 19				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • Transmitter housing Powder-coated die-co	ons can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 asst aluminum				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • Transmitter housing Powder-coated die-co • Sensor housing / co	ons can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 ast aluminum ntainment vessel				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • Transmitter housing Powder-coated die-co	bins can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 ast aluminum				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • Transmitter housing Powder-coated die-co • Sensor housing / co	ons can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 ast aluminum ntainment vessel Surface resistance to acids and alkalis				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • <i>Transmitter housing</i> Powder-coated die-co • <i>Sensor housing / co</i> Promass A, I, F	cons can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel-				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • <i>Transmitter housing</i> Powder-coated die-co • <i>Sensor housing / co</i> Promass A, I, F Promass M	cons can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313)				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • <i>Transmitter housing</i> Powder-coated die-co • <i>Sensor housing / co</i> Promass A, I, F Promass M	ans can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) nousing (remote version)				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13, 15 a • <i>Transmitter housing</i> Powder-coated die-co • <i>Sensor housing / co</i> Promass A, I, F Promass M • <i>Sensor connection h</i>	and 19 and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>nousing (remote version)</i> 304 SS (1.4301)				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Powder-coated die-co Sensor housing / co Promass A, I, F Promass M Sensor connection h Process connection	and 19 and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>nousing (remote version)</i> 304 SS (1.4301) S				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13, 15 a • <i>Transmitter housing</i> Powder-coated die-co • <i>Sensor housing / co</i> Promass A, I, F Promass M • <i>Sensor connection h</i> • <i>Process connection h</i> • <i>Process connection</i> Promass A, refer to	and 19 ast aluminum <i>sufface</i> resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>sufface</i> resistance version) 304 SS (1.4301) <i>sufface</i> resistance to acids and alkalis <i>sufface</i> resistance				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13, 15 a • <i>Transmitter housing</i> Powder-coated die-co • <i>Sensor housing / co</i> Promass A, I, F Promass M • <i>Sensor connection h</i> • <i>Process connection h</i> • <i>Process connection</i> Promass A, refer to	and 19 and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>nousing (remote version)</i> 304 SS (1.4301) S				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Powder-coated die-co Sensor housing / co Promass A, I, F Promass M Sensor connection f Process connection f Promass A, refer to to page 19; Promass	and 19 ast aluminum <i>sufface</i> resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>sufface</i> resistance version) 304 SS (1.4301) <i>sufface</i> resistance to acids and alkalis <i>sufface</i> resistance				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Powder-coated die-co Sensor housing / co Promass A, I, F Promass M Sensor connection f Process connection f Promass A, refer to to page 19; Promass Measuring tubes Promass A Promass I	and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>nousing (remote version)</i> 304 SS (1.4301) s page 13; Promass M (high pressure), refer 1, M, F, refer to pages 16, 17, and 18 904L SS (1.4539), Alloy C-22 (N06022) Titanium Grade 9				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Powder-coated die-co Sensor housing / co Promass A, I, F Promass M Sensor connection f Process connection f Promass A, refer to to page 19; Promass Measuring tubes Promass A	ans can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) nousing (remote version) 304 SS (1.4301) s page 13; Promass M (high pressure), refer I, M, F, refer to pages 16, 17, and 18 904L SS (1.4539), Alloy C-22 (N06022) Titanium Grade 9 3/8" to 2" (DN 8 to 50), titanium Grade 9				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13, 15 a • Transmitter housing Powder-coated die-co • Sensor housing / co Promass A, I, F Promass M • Sensor connection h • Process connection h • Process connection h • Process A, refer to to page 19; Promass • Measuring tubes Promass A Promass I Promass M	ans can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 asst aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) nousing (remote version) 304 SS (1.4301) s page 13; Promass M (high pressure), refer I, M, F, refer to pages 16, 17, and 18 904L SS (1.4539), Alloy C-22 (N06022) Titanium Grade 9 3/8" to 2" (DN 8 to 50), titanium Grade 9 3" (DN 80), titanium Grade 2				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Powder-coated die-co Sensor housing / co Promass A, I, F Promass M Sensor connection f Process connection f Promass A, refer to to page 19; Promass Measuring tubes Promass A Promass I	ons can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 east aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>nousing (remote version)</i> 304 SS (1.4301) <i>s</i> page 13; Promass M (high pressure), refer I, M, F, refer to pages 16, 17, and 18 904L SS (1.4539), Alloy C-22 (N06022) Titanium Grade 9 3/8" to 2" (DN 8 to 50), titanium Grade 9 3/8" to 2" (DN 8 to 50), titanium Grade 9 3/8" to 4" (DN 8 to 100), 904L SS (1.4539)				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13, 15 a <i>Transmitter housing</i> Powder-coated die-co <i>Sensor housing / co</i> Promass A, I, F Promass M <i>Sensor connection f</i> <i>Process connection f</i> <i>Process connection f</i> <i>Promass A</i> , refer to to page 19; Promass Measuring tubes Promass A Promass I Promass M Promass F	ans can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 asst aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) nousing (remote version) 304 SS (1.4301) s page 13; Promass M (high pressure), refer I, M, F, refer to pages 16, 17, and 18 904L SS (1.4539), Alloy C-22 (N06022) Titanium Grade 9 3/8" to 2" (DN 8 to 50), titanium Grade 9 3" (DN 80), titanium Grade 2				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13, 15 a Transmitter housing Powder-coated die-o Sensor housing / co Promass A, I, F Promass M Sensor connection h Process connection Promass A, refer to to page 19; Promass Measuring tubes Promass A Promass I Promass F Gaskets	and 19 and 19 and 19 and 19 ast aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>nousing (remote version)</i> 304 SS (1.4301) <i>s</i> page 13; Promass M (high pressure), refer 1, M, F, refer to pages 16, 17, and 18 904L SS (1.4539), Alloy C-22 (N06022) Titanium Grade 9 3/8" to 2" (DN 8 to 50), titanium Grade 9 3" (DN 80), titanium Grade 2 3/8" to 4" (DN 8 to 100), 904L SS (1.4539) 3/8" to 3" (DN 8 to 80), Alloy C-22 (N06022)				
Design / dimensions Weight	The material load cu all process connection Dependent on nominal Endress+Hauser for Ap loss. Mechanical of Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13 thru Refer to pages 13, 15 a <i>Transmitter housing</i> Powder-coated die-co <i>Sensor housing / co</i> Promass A, I, F Promass M <i>Sensor connection f</i> <i>Process connection f</i> <i>Process connection f</i> <i>Promass A</i> , refer to to page 19; Promass Measuring tubes Promass A Promass I Promass M Promass F	ons can be found on pages 14, 16, 17 and 20. diameter and sensor type. Consult oplicator PC software to determine pressure construction 21 and 19 east aluminum <i>ntainment vessel</i> Surface resistance to acids and alkalis 304 SS (1.4301) Surface resistance to acids and alkalis 3/8" to 2" (DN 8 to DN 50); chemically nickel- plated steel; 3" (DN 80), 304L SS (1.4313) <i>nousing (remote version)</i> 304 SS (1.4301) <i>s</i> page 13; Promass M (high pressure), refer I, M, F, refer to pages 16, 17, and 18 904L SS (1.4539), Alloy C-22 (N06022) Titanium Grade 9 3/8" to 2" (DN 8 to 50), titanium Grade 9 3" (DN 80), titanium Grade 2 3/8" to 4" (DN 8 to 100), 904L SS (1.4539)				

	Mechanic	al construction continued
Materials (con't.)	1	tubes (con't.)
	Promass F	
	Gaskets	
	Promass A	, F No internal seals
	Promass I,	
	Promass M	
Process connections	Promass A	Welded process connections:
		4-VCO-4 fittings, 1/2" Tri-clamp®
		Screw-on process connections:
		flanges (ANSI, DIN2501, JIS B2238), NPT-F and SWAGELOK fittings
	Promass I	Welded process connections:
		12-VCO-4 fittings, flanges (ANSI, DIN2501,
		JIS B2238)
		Sanitary connections:
		Hygienic coupling DIN 11851, Tri-clamp [®] , and SMS 1145
	Promass M	Screw-on process connections:
		8-VCO-4 fittings, 12-VCO-4 fittings, flanges (ANSI,
		DIN, JIS B2238)
		Sanitary connections:
		Tri-clamp [®] , hygienic coupling DIN 11851, SMS 1145
	Promass M	Screw-on process connections:
	high pressure	e 1/2" or 3/8" NPT, G 3/8", and 1/2" SWAGELOK
		coupling, connector with 7/8-14 UNF internal thread
	Promass F	Welded process connections:
		Flanges (ANSI, DIN 2501, JIS B2238), 8-VCO-4
		fittings, 12-VCO-4 fittings
		Sanitary connections:
Flastriant convertion		Tri-clamp [®] , hygienic coupling DIN 11851, SMS 1145
Electrical connection		rams: see pages 8 and 9
		es (input / output, remote version):
		PG 13.5 (5-15 mm) conduit entries, M20 x 1.5 (8-15 mm) hreads for cable entries.
		olation: all circuits for inputs, outputs, power supply,
		are galvanically isolated from each other.
		cifications (remote version), see page 9.
	1	User interface
Operation	The instrume	nt can basically be configured in two different ways:
operation		with DIP switches and/or local display:
		es for setting basic instrument functions
		ay and push buttons for additional functions
		configuring the auxiliary input
		using HART [®] protocol:
		ndheld terminal DXR 275
	 HART[®] har 	
	 HART[®] har 	ndheld terminal DXR 275 II software (remote configuration, process
Display	 HART[®] har Commuwin visualizatio 	ndheld terminal DXR 275 II software (remote configuration, process
Display	 HART[®] har Commuwin visualizatio LCD 8-digit. operating state 	ndheld terminal DXR 275 II software (remote configuration, process n) 11 segments for dispalyed engineering units and tus
Display Communication	 HART[®] har Commuwin visualizatio LCD 8-digit. operating state 	ndheid terminal DXR 275 II software (remote configuration, process n) 11 segments for dispalyed engineering units and
	 HART[®] har Commuwin visualizatio LCD 8-digit. operating state 	ndheld terminal DXR 275 II software (remote configuration, process in) 11 segments for dispalyed engineering units and tus it with superimposed HART [®] protocol
Communication	 HART[®] har Commuwin visualizatio LCD 8-digit. operating state 	Adheld terminal DXR 275 II software (remote configuration, process in) 11 segments for dispalyed engineering units and tus it with superimposed HART® protocol Power supply
	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current outpu Transmittee	adheld terminal DXR 275 II software (remote configuration, process in) 11 segments for dispalyed engineering units and tus it with superimposed HART [®] protocol Power supply r:
Communication	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output Transmittee 85 to 230 V	ndheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus it with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz
Communication	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output Transmittee 85 to 230 V	adheld terminal DXR 275 II software (remote configuration, process in) 11 segments for dispalyed engineering units and tus it with superimposed HART [®] protocol Power supply r:
Communication	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output Transmittee 85 to 230 V 20 to 55 VE Sensor:	ndheid terminal DXR 275 Il software (remote configuration, process in) 11 segments for dispalyed engineering units and tus it with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz
Communication Supply voltage	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output Transmittee 85 to 230 V 20 to 55 VE Sensor: Power is state	ndheld terminal DXR 275 Il software (remote configuration, process in) 11 segments for dispalyed engineering units and tus it with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC
Communication	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output Transmittee 85 to 230 V 20 to 55 VE Sensor: Power is st AC: < 15 VA DC: < 15 W	ndheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus tt with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC upplied by the transmitter (including sensor) (including sensor)
Communication Supply voltage	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output Transmittee 85 to 230 V 20 to 55 VE Sensor: Power is st AC: < 15 VA DC: < 15 W	ndheid terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus it with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC upplied by the transmitter (including sensor)
Communication Supply voltage Power consumption	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output Transmittee 85 to 230 V 20 to 55 VE Sensor: Power is st AC: < 15 VA DC: < 15 V Bridges minin EEPROM s	Adheld terminal DXR 275 II software (remote configuration, process n) 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and tus 12 segments for dispalyed engineering units and tus 13 segments for dispalyed engineering units and tus 14 segments for dispalyed engineering units and tus 15 segments for dispalyed engineering units and 15 segments for dispalyed engineering units and 16 segments for dispalyed engineering units and 17 segments for dispalyed engineering units and 18 segments for dispalyed engineering units and 19 segments for dispalyed engine
Communication Supply voltage Power consumption	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current outpu Transmitte. 85 to 230 V 20 to 55 VE Sensor: Power is stat AC: < 15 VA DC: < 15 W Bridges minin EEPROM statements batteries reserved	Adheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus tt with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC upplied by the transmitter (including sensor) num one power cycle (22 ms). saves measuring system data on power failure (no equired)
Communication Supply voltage Power consumption	 HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output <i>Transmitter</i> 85 to 230 V 20 to 55 VE <i>Sensor:</i> Power is su AC: < 15 VA DC: < 15 W Bridges minin EEPROM s batteries re DAT = exch 	Adheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus tt with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC upplied by the transmitter (including sensor) num one power cycle (22 ms). saves measuring system data on power failure (no equired) hangeable data storage module which stores all sensor
Communication Supply voltage Power consumption	 HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output <i>Transmitte</i>. 85 to 230 V 20 to 55 VE <i>Sensor:</i> Power is stat AC: < 15 VA DC: < 15 W Bridges minin EEPROM state batteries re DAT = exch data such at 	ndheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus tt with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC upplied by the transmitter (including sensor) num one power cycle (22 ms). saves measuring system data on power failure (no equired)
Communication Supply voltage Power consumption	 HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output <i>Transmitte</i>. 85 to 230 V 20 to 55 VE <i>Sensor:</i> Power is su AC: < 15 VA DC: < 15 W Bridges minin EEPROM s batteries re DAT = exch data such a etc. 	Adheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus tt with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC upplied by the transmitter (including sensor) num one power cycle (22 ms). saves measuring system data on power failure (no equired) hangeable data storage module which stores all sensor as calibration data, nominal diameter, sensor version,
Communication Supply voltage Power consumption	 HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output <i>Transmitte</i>. 85 to 230 V 20 to 55 VE <i>Sensor:</i> Power is su AC: < 15 VA DC: < 15 W Bridges minin EEPROM s batteries re DAT = exch data such a etc. 	ndheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus tt with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC upplied by the transmitter (including sensor) num one power cycle (22 ms). saves measuring system data on power failure (no equired) nangeable data storage module which stores all sensor
Communication Supply voltage Power consumption	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output Transmittee 85 to 230 V 20 to 55 VE Sensor: Power is stat AC: < 15 VA DC: < 15 VA DC: < 15 VA Bridges minin EEPROM s batteries re DAT = exch data such a etc. Certif	Adheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus tt with superimposed HART® protocol Power supply r: /AC, +10%, 50/60 Hz DC, 16 to 62 VDC upplied by the transmitter (including sensor) num one power cycle (22 ms). saves measuring system data on power failure (no equired) hangeable data storage module which stores all sensor as calibration data, nominal diameter, sensor version,
Communication Supply voltage Power consumption Power supply failure	 HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output <i>Transmitte</i>. 85 to 230 V 20 to 55 VE <i>Sensor:</i> Power is stat AC: < 15 VA DC: < 15 W Bridges minin EEPROM state batteries restate DAT = exchata such a etc. Certif Information on FM, CSA, CE 	Adheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and tus 12 segments for dispalyed engineering units and tus 13 segments for dispalyed engineering units and tus 14 segments for dispalyed engineering units and tus 14 segments for dispalyed engineering units and tus 15 sequents for dispalyed engineering units and 15 sequents and approvals 15 sequents and approvals 16 sequents for dispalyed engineering units and 17 sequents for dispalyed engineering units and 18 sequents for dispalyed engineering units and 19 sequents for dispalyed engineering units and 19 sequents for dispalyed engineering units and 19 sequents for dispalyed engineering units and 10 sequents for dispalyed engineering units and 10 sequents for dispalyed engineering units and 19 sequents for dispalyed engineering units and 10 sequents for dispalyed engins for dispalyed engineering units and 1
Communication Supply voltage Power consumption Power supply failure	 HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output <i>Transmitte</i>. 85 to 230 V 20 to 55 VE <i>Sensor:</i> Power is stat AC: < 15 VA DC: < 15 W Bridges minin EEPROM state batteries restate DAT = exchata such a etc. Certif Information on FM, CSA, CE 	Adheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and tus 12 segments for dispalyed engineering units and tus 13 segments for dispalyed engineering units and tus 14 segments for dispalyed engineering units and tus 14 segments for dispalyed engineering units and tus 15 sequents of the segment
Communication Supply voltage Power consumption Power supply failure	 HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output <i>Transmitte</i>. 85 to 230 V 20 to 55 VE <i>Sensor</i>: Power is stat AC: < 15 VA DC: < 15 W Bridges minin EEPROM state batteries reference DAT = exch data such a etc. Certif Information on FM, CSA, CE request. All e 	Adheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and 11 segments for dispalyed engineering units and 12 segments for dispalyed engineering units and 12 segments for dispalyed engineering units and 13 segments for dispalyed engineering units and 13 segments for dispalyed engineering units and 14 segments for dispalyed engineering units and 14 segments for dispalyed engineering units and 15 sequents for dispalyed engineering units and 15 sequents for dispalyed engineering units and 16 sequents for dispalyed engineering units and 17 sequents for dispalyed engineering units and 18 sequents for dispalyed engins for dispalyed engineering units and 1
Communication Supply voltage Power consumption Power supply failure Hazardous area	HART® har Commuwin visualizatio LCD 8-digit. operating stat Current output <i>Transmitte</i> . 85 to 230 V 20 to 55 VE <i>Sensor:</i> Power is su AC: < 15 VA DC: < 15 W Bridges minin EEPROM s batteries re DAT = exch data such a etc. Certif Information on FM, CSA, CE request. All e By attaching	Adheld terminal DXR 275 Il software (remote configuration, process n) 11 segments for dispalyed engineering units and tus 11 segments for dispalyed engineering units and 11 segments for dispalyed engineering units and 12 segments for dispalyed engineering units and 13 segments for dispalyed engineering units and 13 segments for dispalyed engineering units and 14 segments for dispalyed engineering units and 14 segments for dispalyed engineering units and 15 segment for dispalyed engineering units and 15 segments for dispaly

Promass 63 A Ordering Information

Promass 63 A 1 - 2 3 4 5 6 7 8 9 10

Nominal Size / Tube Material 1

	Size		Full Scale lb/min		Material
	in.	mm	liquid	gas	
S01	1/24	1	0.75	0.37	904L SS
C01	1/24	1	0.75	0.37	Alloy C-22 (N06022)
S02	1/12	2	3.7	1.8	904L SS
C02	1/12	2	3.7	1.8	Alloy C-22 (N06022)
S04	1/8	4	17	4.6	904L SS
C04	1/8	4	17	4.6	Alloy C-22 (N06022)

- Process Connection / Material
- Cajon 4-VCO-4 couplings SVW

1/2" Tri-clamp couplings, 3-A (only for SS version) STW

- High pressure version < 5800 psi, Cajon 4-VCO-4 couplings (only for 1/12" and 1/8" SS version) PVW SPW 1/2" Tri-clamp couplings, 3-A, 240 grit surface (only for SS version)
- Secondary Containment / Certificates * 3
 - 360 psi secondary containment 0
 - 360 psi secondary containment, with 3.1B material and 2.3 pressure test certificate 1
 - 2 360 psi secondary containment, including purge connections, with 2.3 pressure test certificate 360 psi secondary containment, including purge connections, with 3.1B material and 2.3 3
 - pressure test certificate
- 4 Calibration

2

- 0.1% flow calibration, standard density calibration 0
- 0.1% flow calibration, 0.2% density calibration 1 2
 - 5-point 0.1% flow calibration, standard density calibration (specify flow range)
- 3 5-point 0.1% flow calibration, 0.2% density calibration (specify flow range)
- Protection Type / Version 5
- NEMA 4X compact version В
 - NEMA 4X remote version, 33 ft. cable included
 - NEMA 4X remote version, 66 ft. cable included
- 6 **Cable Entries**
- 1/2" NPT 2
- 7 Approvals

8

С

- FM approved NI, Class I, Div. 2, Grps. A-D; DIP Class II, III, Div. 1, Grps. E-G
- FM approved XP Class I, Div. 1, Grps A-D; DIP Class II, III, Div. 1, Grps E-G 6
- **Display Option**
- Blind А
- Display with touch control В
- 9 Power Supply
 - 85 to 260 VAC, 50/60 Hz (Not for DoS interface to Procom DZL 363) 1
 - 2 16 to 62 VDC 3
 - Power supplied by Procom DZL 363 transmitter (DoS 2-wire connection only)
 - Enhanced climate resistance 85 to 260 VAC, 50/60 Hz 4
 - Enhanced climate resistance 20 to 55 VAC, 16 to 62 VDC 5
 - Enhanced climate resistance Procom DZL supplied power
- Signal Outputs 10

6

- Frequency and current / HART output А
- в Current output and Rackbus RS 485
- С Frequency output and Rackbus RS 485
- Current output and auxiliary input (must order display option "B") D
- Frequency output and auxiliary input (must order display option "B") Е
- 2 current outputs / HART F
- DoS interface to Procom DZL 363 transmitter, power supplied by Procom (not for display G with Touch Control version)
- н PROFIBUS PA and one current output, intrinsically safe (only for Class I, Div. 1)
- Data interface to Procom DZL 363, power NOT supplied by Procom (not for display L with Touch Control version)
- IS data interface to Procom DZL 363, power NOT supplied by Procom (only for Class I, М Div. 1 version, not for display with Touch Control version)
- Ν IS current / HART and frequency (passive) output (only for Class I, Div. 1 version)
- т PROFIBUS PA and one current output (not for Class I, Div. 1 version)
- PROFIBUS DP (not for Class I, Div. 1 version) W
- * 2.3 pressure test certificate includes individual pressure test of measuring system and type test of secondary containment. 3.1B material certificate includes measuring system and secondary containment.

Promass 63 F Ordering Information

Promass 63 F 1 - 2 3 4 5 6 7 8 9 10 N

Nominal S	Size/Tub	e Materia	al		
	Size	Full Sca	ale Ib/min	Material	
	in.	mm	liquid	gas	
S08	0.37	8	74	7.4	904LSS
C08	0.37	8	74	7.4	Alloy C-22 (N06022)
S15	0.5	15	238	23.8	904LSS
C15	0.5	15	235	23.8	Alloy C-22 (N06022)
S25	1	25	660	66	904LSS
C25	1	25	660	66	Alloy C-22 (N06022)
S40	1.5	40	1650	165	904LSS
C40	1.5	40	1650	165	Alloy C-22 (N06022)
S50	2	50	2570	257	904LSS
C50	2	50	2570	257	Alloy C-22 (N06022)
S80	3	80	6600	660	904LSS
C80	3	80	6600	660	Alloy C-22 (N06022)
S1H	4	100	11667	1160	904LSS
Process C	Connectio	n			
AAW	150 lb A	NSI/316	6L SS or Alloy	C-22 (3/8",	1/2", 1", 1-1/2", 2" and 3" flanges)
ABW	300 lb A	NSI/316	6L SS or Alloy	C-22 (3/8",	1/2", 1", 1-1/2", 2" and 3" flanges)
ACW	600 lb A	NSI/316	6L SS or Alloy	C-22 (3/8",	1/2", 1", 1-1/2", 2" and 3" flanges)

- 600 lb ANSI / 316L SS or Alloy C-22 (3/8", 1/2", 1", 1-1/2", 2" and 3" flanges) Tri-clamp sanitary coupling with 3-A (stainless only), 3/8" to 1" sizes, 1" clamp A
- FTA
- FTW Tri-clamp sanitary coupling without 3-A (stainless only), 3/8" to 1" sizes, 1" clamp FUA
- 1/2" Tri-clamp sanitary coupling with 3-A (0.5" stainless only), 3/8" to 1/2" only FUW
- 1/2"Tri-clamp sanitary coupling without 3-A (0.37" and 0.5") stainless only) Cajon 8-VCO-4 (1/2") coupling, 316L SS (3/8" stainless measuring tube only) CVW
- Cajon 12-VCO-4 (3/4") coupling, 316L SS (1/2" stainless measuring tube only) CWW
- PAW 150 lb ANSI, 4" SS flanges (not for use on 3/8" to 2" meters)
- 300 lb ANSI, 4" SS flanges (not for use on 3/8" to 2" meters) 150 lb ANSI, 6" SS flange (for 4" sensor only) PBW
- UAW
- 999 Other
- 3 Secondary Containment / Certificates *
 - 360 psi secondary containment 0
 - 580 psi secondary containment, with 2.3 pressure test certificate
 - 3
 - 580 psi secondary containment, including purge connections, with 2.3 pressure test certificate 580 psi secondary containment, with 3.1B material and 2.3 pressure test certificate 4
 - 5 580 psi secondary containment, including purge connections, with 3.1B material and 2.3 pressure test certificate
 - А 250 psi secondary containment, 4" sensor only в
 - 360 psi secondary containment with pressure test certificates (not for 3/8" to 2" sizes)
 - 360 psi secondary containment, with 3.1B material with pressure test certificate (not for 3/8" to 2" sizes)
 - C F
 - 250 psi secondary containment with 2.3 pressure test certificate, 4" sensor only 250 psi secondary containment, including purge connections, with 2.3 pressure test certificate, 4" sensor only 250 psi secondary containment with 2.3 pressure test certificate, with 2.18B material and 2.3 pressure test G H certificate, 4" sensor only
 - 9 Other
- Calibration 4

2

- 0
- 0.1% flow calibration, standard density calibration 0.1% flow calibration, 0.1% density calibration
- 5-point 0.1% flow calibration, standard density calibration (specify flow range)
- 5-point 0.1% flow calibration, 0.1% density calibration (specify flow range)
- 3 9 Other
- Protection Type / Version 5
- NEMA 4X compact version
 - в NEMA 4X remote version, 33 ft. cable included
 - NEMA 4X remote version, 66 ft. cable included С
- 6 Cable Entries
 - 1/2" NPT
 - 9 Other
- 7 Approvals
 - FM approved, XP, Class I, Div. 1, Groups C-D; Dust ignition proof, Class II, III, Div. 1, Grps E-G (not for 3/8" 2") Λ FM approved NI, Class I, Div. 2, Grps. A-D; DIP Class II, III; Div. 1, Grps. E-G 5
 - FM approved XP Class I, Div. 1, Grps A-D; DIP Class II, III; Div. 1, Grps. E-G (not for 3") 6
- Display Option 8 Blind

9

- в Display with touch control
- Power Supply
 - 85 to 260 VAC, 50/60 Hz (not for DoS interface to Procom DZL 363)
 - 20 to 55 VAC, 16 to 62 VDC (not for DoS interface to Procom DZL 363))
 - Power supplied by Procom DZL 363 transmitter (DoS 2-wire connection only) Enhanced climate resistance 85 to 260 VAC, 50/60 Hz
 - 4
 - Enhanced climate resistance 20 to 55 VAC, 16 to 62 VDC 5
 - Enhanced climate resistance Procom DZL supplied power 6
- 10 Signal Outputs

3

- Frequency and current / HART output
- Current output and Rackbus RS 485 Frequency output and Rackbus RS 485 в
- С
- D Current output and auxiliary input (must order display option "B")
- E Frequency output and auxiliary input (must order display option "B")
- F 2 current outputs / HART G
 - DoS interface to Procom DZL 363 transmitter power supplied by Procom (not for display with Touch Control version)
- H PROFIBUS PA and one current output, intrinsically safe (only for Class I, Div. 1) L.
 - Data interface to Procom DZL 363, power NOT supplied by Procom (not for display with Touch Control version) IS data interface to Procom DZL 363, power NOT supplied by Procom (only for Class I, Div. 1 version, not for display with Touch Control version)
- М
- Ν IS current / HART and frequency (passive) output (only for Class I, Div. 1 version)
- т
- PROFIBUS PA and one current output (not for Class I, Div. 1 version) PROFIBUS DP (not for Class I, Div. 1 version) Ŵ

* 2.3 pressure test certificate includes individual pressure test of measuring system and type test of

secondary containment. 3.1B material certificate includes measuring system and secondary containment.

Promass 63 M 1 - 2 3 4 5 6 7 8 9 10 11

Nominal	Size / Tu	be Mater	ial		
	Size		Full Scale lb/	min	Material
	in.	mm	liquid	gas	
T08	0.37	8	74	7.4	Titanium
T15	0.5	15	238	23.8	Titanium
T25	1	25	660	66	Titanium
T40	1.5	40	1650	165	Titanium
T50	2	50	2570	257	Titanium
T80	3	80	6600	660	Titanium
Process	Connecti	ion / Mat	erial		
SA	150 lb /	ANSI / 31	6L SS		
PA	150 lb /	ANSI / 31	I6L SS, 4" flar	nge on 3" s	sensor
TA	150 lb /	ANSI / Ti	tanium	-	
QA	150 lb /	ANSI / P	/DF		
SB	300 lb /	ANSI / 31	6L SS		
PB	300 lb /	ANSI / 31	I6L SS, 4" flar	nge on 3" s	sensor

- 300 lb ANSI / Titanium
- ΤВ
- SC TC AT 600 lb ANSI / 316L SS 600 lb ANSI / Titanium
- Tri-clamp sanitary coupling with 3-A
- ST Tri-clamp sanitary coupling without 3-A
- 1/2" Tri-clamp sanitary coupling with 3-A (only for 3/8" and 1/2" sensor) 1/2" Tri-clamp sanitary coupling without 3-A (only for 3/8" and 1/2" sensor) Cajon 8-VCO-4 (1/2") couplings / 316L SS (only for 3/8" sensor) AU SU
- SV
- SW Cajon 12-VCO-4 (3/4") couplings / 316L SS (only for 1/2" sensor) WO Without process connections
- 3 Internal Seals / Material

1

2

- Viton o-rings (not for Tri-clamp couplings) EPDM o-rings (not for Tri-clamp couplings) В
- Silicone o-rings (not for Tri-clamp couplings) С
- FEP encapsulated Viton o-rings (not for Tri-clamp or Kynar flanges) Kalrez o-rings (not for Tri-clamp couplings) D
- Е
- Silicone flat gaskets (only for Tri-clamp couplings) F
- EPDM flat gaskets (only for Tri-clamp couplings) G
- W No seals (only versions without connections)
- Secondary Containment / Certificates * 4
 - 580 psi secondary containment 0 2
 - 1450 psi secondary containment, with 2.3 pressure test certificate
 - 1450 psi secondary containment, including purge connections, with 2.3 pressure test certificate) 4 6
 - 1450 psi secondary containment, with 3.1B material and 2.3 pressure test certificate (not for PVDF flanges)
 - 1450 psi secondary containment, including purge connections, with 3.1B material and 2.3 pressure test certificate (not for PVDF flanges)
- 5 Calibration

8

- 0.1% flow calibration, standard density calibration
- 0.1% flow calibration, 0.2% density calibration
- 5-point 0.1% flow calibration, standard density calibration (specify flow range)
- 3 5-point 0.1% flow calibration, 0.2% density calibration (specify flow range)
- 6
- Protection Type / Version A NEMA 4X compact version
 - NEMA 4X remote version, 33 ft. cable included
 - С NEMA 4X remote version, 66 ft. cable included
- Cable Entries 7
- 1/2" NPT
- 8 Approvals

в

- FM approved XP, Class I, Div. 1, Grps B-D; DIP Class II, III, Div. 1, Grps E-G (for 3" size only) FM approved NI, Class I, Div. 2, Grps. A-D; DIP Class II, III, Div. 1, Grps. E-G FM approved XP, Class I, Div. 1, Grps. A-D; DIP Class II, III, Div. 1, Grps. E-G
- 5
- 6
- 9 Display Blind
- Display with touch control в
- 10 Power S upply
 - 85 to 260 VAC, 50/60 Hz (not for DoS interface to Procom DZL 363)
 - 2 20 to 55 VAC or 16 to 62 VDC (not for DoS interface to Procom DZL 363)
 - 3 Power supplied by Procom DZL 363 transmitter (DoS 2-wire connection only)
 - 4 Enhanced climate resistance 85 to 260 VAC, 50/60 Hz
 - Enhanced climate resistance 20 to 55 VAC, 16 to 62 VDC 5
 - Enhanced climate resistance Procom DZL supplied power 6
- 11 Signal Outputs

Т

- Frequency and current / HART output А
- В Current output and Rackbus RS 485
- С Frequency output and Rackbus RS 485
- Current output and auxiliary input (must order display option "B") D Е Frequency output and auxiliary input (must order display option "B")
- 2 current outputs / HART F
- DoS interface to Procom DZL 363 transmitter power supplied by Procom (not for display with Touch G Control version)
 - PROFIBUS PA and one current output, intrinsically safe (only for Class I, Div. 1)
- н Data interface to Procom DZL 363, power NOT supplied by Procom (not for display
- with Touch Control version)
- М IS data interface to Procom DZL 363, power NOT supplied by Procom (only for Class I, Div. 1 version, not for display with Touch Control version)
- IS current / HART and frequency (passive) output (only for Class I, Div. 1 version) PROFIBUS PA and one current output (not for Class I, Div. 1 version) Ν
- W PROFIBUS DP (not for Zone 1/ CL I, Div. 1)

* 2.3 pressure test certificate includes individual pressure test of measuring system and type test of secondary containment. 3.1B material certificate includes measuring system and secondary containment.

Promass 63 MP **Ordering Information**

Promass 63 MP 1 - 2 3 4 5 6 7 8 9 10 11

Nominal line pressure up to 5000 psi (350 bar), burst pressure > 20,000 psi (1400 bar)

Nominal Size / Tube Material

	Size		Full Scale lb/min		Material
	in.	mm	liquid	gas	
08	0.37	8	74	7.4	Titanium
15	0.5	15	238	23.8	Titanium
25	1	25	660	66	Titanium

- 2 Process Connection / Material
 - Without process connections WO
 - Connector with female thread (7/8"-14 UNF) UA
 - Connector with G-3/8" couplings UB
 - UC Connector with 3/8" NPT couplings
 - Connector with 1/2" NPT couplings UD
 - Connector with 1/2" SWAGELOK couplings UE
- 3 Internal Seals / Material
 - Viton o-rings A
 - С Silicone o-rings
 - W No seals (only versions without connectors)
 - Secondary Containment / Certificates *
 - 2.3 pressure test of measuring system, 7500 psi 2 4
 - 2.3 pressure test of measuring system, 7500 psi, including purge connections
 - 2.3 pressure test of measuring system, 7500 psi and 3.1B material certificate 6
 - 2.3 pressure test of measuring system, 7500 psi and 3.1B material certificate, including
 - purge ocnnections
- Calibration 5

8

4

- 0.1% flow calibration, standard density calibration 0
- 0.1% flow calibration, 0.2% density calibration 1
- 5-point 0.1% flow calibration, standard density calibration (specify flow range) 2
- 3 5-point 0.1% flow calibration, 0.2% density calibration (specify flow range)
- Protection Type / Version 6
 - NEMA 4X compact version
 - NEMA 4X remote version, 33 ft. cable included в
 - С NEMA 4X remote version, 66 ft. cable included
- 7 **Cable Entries**
- 1/2" NPT 2
- 8 Approvals 5
 - FM approved NI, Class I, Div. 2, Grps. A-D; DIP Class II, III, Div. 1, Grps. E-G FM approved XP, Class I, Div. 1, Grps. A-D; DIP Class II, III, Div. 1, Grps. E-G
 - 6
- 9 Display
 - Blind А
 - Display with touch control R
- 10 Power Supply
 - 85 to 260 VAC, 50/60 Hz (not for DoS interface to PROCOM DZL 363) 2
 - 20 to 55 VAC, 16 to 62 VDC (not for DoS interface to PROCOM DZL 363
 - Power supplied by Procom DZL 363 transmitter (DoS 2-wire connection only) 3
 - Enhanced climate resistance 85 to 260 VAC, 50/60 Hz 4
 - 5
 - Enhanced climate resistance Procom DZL supplied power 6
- 11 Signal Outputs
 - Frequency and current / HART output
 - В Current output and Rackbus RS 485
 - Frequency output and Rackbus RS 485 С
 - D Current output and auxiliary input (must order display option "B")
 - Е Frequency output and auxiliary input (must order display option "B")
 - 2 current outputs / HART F
 - G DoS interface to Procom DZL 363 transmitter power supplied by Procom (not for display with Touch Control version)
 - н PROFIBUS PA and one current output, intrinsically safe (only for Class I, Div. 1)
 - Data interface to Procom DZL 363, power NOT supplied by Procom (not for display L with Touch Control version)
 - IS data interface to Procom DZL 363, power NOT supplied by Procom (only for Class I, Μ Div. 1 version, not for display with Touch Control version)
 - Ν IS current / HART and frequency (passive) output (only for Class I, Div. 1 version)
 - PROFIBUS PA and one current output (not for Class I, Div. 1 version)
 - w PROFIBUS DP (not for Zone 1/ Class I, Div. 1 version)
- * 2.3 pressure test certificate includes individual pressure test of measuring system without couplings, test pressure 7500 psi. 3.1B material certificate includes measuring system and secondary containment.

Enhanced climate resistance 20 to 55 VAC, 16 to 62 VDC

Promass 63 I Ordering Information

Promass 63 I 1 - 2 3 4 5 6 7 8 9 10

Nominal Size / Tube Material 1

	Si	Size		Full Scale lb/min		
	in.	mm	liquid	gas		
T08	0.37	8	74	7.4	Titanium	
T15	0.5	15	238	23.8	Titanium	
T16 *	0.5	15	660	66	Titanium	
T25	1	25	660	66	Titanium	
T26 *	1	25	1650	165	Titanium	
T40	1.5	40	1650	165	Titanium	
T41 *	1.5	40	2570	257	Titanium	
T50	2	50	2570	257	Titanium	

- Process Connection / Material 2
 - AAW 150 lb ANSI / Wetted parts Titanium
 - ABW 300 lb ANSI / Wetted parts Titanium
 - 600 lb ANSI / Wetted parts Titanium ACW
 - Cajon 12-VCO-4 (3/4") couplings / 316L SS (only for 3/8" and 1/2" sensor) CWW
 - FT3 Tri-clamp sanitary coupling with 3-A approval
 - Tri-clamp coupling, polished verson with 3-A approval, 240 grit finish FTH
 - FU3 1/2" Tri-clamp sanitary coupling with 3-A approval (only for 3/8" and 1/2" sensor, not to be used with 1/2" full bore sensor)
 - FUH 1/2" Tri-clamp coupling, polished version with 3-A approval, 240 grit finish (only for 3/8" and 1/2" sensor, not to be used with 1/2" full bore sensor)
 - FP3 3/4" Tri-clamp sanitary coupling with 3-A approval (only for 3/8", 1/2" and 1/2" full bore sensor)
 - FPH 3/4" Tri-clamp coupling, polished version with 3-A approval, 240 grit finish (only for 3/8", 1/2"
 - and 1/2" full bore sensor)
- Secondary Containment / Cerificates ** 3
 - 360 psi secondary containment 0
 - 580 psi senondary containment with 2.3 pressure test certificate 2
 - 3 580 psi secondary containment, including purge connections, with 2.3 pressure test certificate
 - 4 580 psi secondary containment, with 3.1B material and 2.3 pressure test certificate
 - 580 psi secondary containment, including pruge connections, with 3.1B material and 2.3 pressure certificate
- Calibration 4

5

2

3

- 0.2% flow calibration, standard density calibration 0
- 0.2% flow calibration, 0.4% density calibration 1
 - 5-point 0.2% flow calibration, standard density calibration (specify flow range)
 - 5-point 0.2% flow calibration, 0.4% density calibration (specify flow range)
- Protection Type / Version 6
 - NEMA 4X compact version A
 - NEMA 4X remote version, 33 ft. cable included В
 - С NEMA 4X remote version, 66 ft. cable includedr
- 7 Cable Entries
- 1/2" NPT 2
- 8 Approvals
 - FM approved XP, Class I, Div. 1, Grps C-D; DIP Class II, III, Div. 1, Grps E-G (for 1-1/2" Full 4 Bore sensor and 2" sensor only) 5
 - FM approved NI, Class I, Div. 2, Grps. A-D; DIP Class II, III, Div. 1, Grps. E-G
 - FM approved XP, Class I, Div. 1, Grps. A-D; DIP Class II, III, Div. 1, Grps. E-G (for 3/8" to 6
 - 1-1/2" and 1/2" plus 1" Full Bore sensors only)
- Display 9 Blind Α
 - Display with touch control В
- 10 Power Supply
 - 85 to 260 VAC, 50/60 Hz (not for DoS interface to PROCOM DZL 363)
 - 2 20 to 55 VAC, 16 to 62 VDC (not for DoS interface to PROCOM DZL 363)
 - Power supplied by Procom DZL 363 transmitter (DoS 2-wire connection only) 3
 - Enhanced climate resistance 85 to 260 VAC, 50/60 Hz 4
 - Enhanced climate resistance 20 to 55 VAC, 16 to 62 VDC 5
 - 6 Enhanced climate resistance Procom DZL supplied power
- Signal Outputs 11
 - Frequency and current / HART output
 - в Current output and Rackbus RS 485
 - Frequency output and Rackbus RS 485 С
 - Current output and auxiliary input (must order display option "B") D
 - Frequency output and auxiliary input (must order display option "B") Е
 - F 2 current outputs / HART
 - DoS interface to Procom DZL 363 transmitter power supplied by Procom (not for display G with Touch Control version)
 - PROFIBUS PA and one current output, intrinsically safe (only for Class I, Div. 1) н
 - Data interface to Procom DZL 363, power NOT supplied by Procom (not for display with Touch Control version)
 - IS data interface to Procom DZL 363, power NOT supplied by Procom (only for Class I, М
 - Div. 1 version, not for display with Touch Control version) Ν
 - IS current / HART and frequency (passive) output (only for Class I, Div. 1 version) PROFIBUS PA and one current output (not for Class I, Div. 1 version)
 - т W
 - PROFIBUS DP (not for Zone 1/ Class I, Div. 1 version)

* Full Bore version

L

** 2.3 pressure test certificate includes individual pressure test of measuring system and type test of secondary containment. 3.1B material certificate includes measuring system and secondary containment. 27

FU3 and FUH cannot be used with

NOTE!

1/2" Full Bore Sensor

Promass 63 A Process Connection Adapter Set Ordering Information

DK3A 1 - 2 3 4

1	Size	
	SIZE	

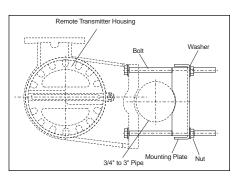
	in.	mm
02	1/12 and 1/24	1 and 2
04	1/8	4

- 2 Process Connection / Material
 - 1/4" NPT-F thread adapter / 904L SS A1
 - 1/4" NPT-F thread adapter / Alloy C-22 (N06022) A2
 - 1/8" Swagelok connector / 316 SS (only for Promass A 1/24" and 1/12" sensors) **B**3
 - 1/4" Swagelok connector / 316 SS C3
 - 1/2" Lap joint flange, 150 lb ANSI / 316L SS; wetted material 904L SS F1
 - F2 1/2" Lap joint flange, 150 lb ANSI / 316L SS; wetted material Alloy C-22 (N06022)
 - 1/2" Lap joint flange, 300 lb ANSI / 316L SS; wetted material 904L SS G1
 - G2 1/2" Lap joint flange, 300 lb ANSI / 316L SS; wetted material Alloy C-22 (N06022)
- 3 Certification

4

- Standard Α
 - Material, Seals
 - 1 Viton o-ring 2
 - EPDM o-ring 3
 - Silicone o-ring 4 Kalrez o-ring

Transmitter Pipe Mounting Kit


A mounting kit is available for mounting the Promass 30 / 33 remote transmitter on pipes from 3/4" to 3". The mounting kit includes:

- 1 mounting plate
- 4 bolts, M8 x 150 mm (5-15/16")
- 4 washers
- 8 nuts, M8
- Order Part Number: 50076905

Pipe Mounting Stand

For Promass A: Promass A - code A01 and A02 (1/24" and 1/12" sensor) for pipe sizes 3/4" to 3". Order Part Number: 50077972 Promass A - code A04 (1/8" sensor) for pipe sizes 3/4" to 3" Order Part Number: 50079218

System Information Promass SI 014D/24/ae **Operating Manual Promass 63** BA 014D/24/ae Technical Information Promass 60 TI 029D/24/ae **Operating Manual Promass 60** BA013D/24/ae

Remote Mounting Kit

United States

Endress+Hauser 2350 Endress Place Greenwood, IN 46143 Phone: (317) 535-7138 1-800-428-4344 FAX: (317) 535-8498

Accessories

Registered Trademarks **KALREZ®**

Registered Trademark of

Registered Trademark of Swagelok & Co., Solon, OH, USA

Registered Trademark of

Registered Trademark of

Wilmington, DE, USA

Registered Trademark of

E.I. Du Pont de Nemours & Co.,

Ladish & Co., Inc., Kenosha, WI, USA

HART Communication Foundation, Austin, TX, USA

Supplementary

Documentation

SWAGELOK®

TRI-CLAMP®

VITON®

HART®

E.I. Du Pont de Nemours & Co., Wilmington, DE, USA

Regional Office Endress+Hauser P.O. Box 901 Harvey, LA 70059 Phone: (504) 366-3264 FAX: (504) 366-3816

Regional Office Endress+Hauser 600 Kenrick, Ste. B-14 Houston, TX 77060 Phone: (281) 999-1991 FAX: (281) 999-1891

Sterling IPC Div. of Endress+Hauser 68950 Powell Road P.O. Box 604 Romeo, MI 48065 Phone: (810) 752-0700 FAX: (810) 752-0705

Canada

Endress+Hauser Canada Ltd. 1440 Graham's Lane Unit 1, Burlington ON, L7S 1W3 Phone: (905) 681-9292 1-800-668-3199 FAX: (905) 681-9444

Endress+Hauser Canada Ltée 6800 Côte de Liesse, Ste. 100 St. Laurent, Que H4T 2A7 Téléphone: (514) 733-0254 Télécopieur: (514) 733-2924

Mexico

Endress+Hauser Calle Camino Sta. Teresa 1384 C.P. 10200 Mexico D.F. Phone: (525)568-9658 FAX: (525) 568-4183

