

Conductive Switch Amplifier KFA5-ER-1.W.LB

- 1-channel signal conditioner
- 115 V AC supply
- Level sensing input
- Adjustable range $1 \mathrm{k} \Omega \ldots 150 \mathrm{k} \Omega$
- Relay contact output
- Fault relay contact output
- Adjustable time delay up to 10 s
- Minimum/maximum control
- Line fault detection (LFD)

Function

This signal conditioner provides the AC measuring voltage for the level sensing electrodes.
Once the measured medium reaches the electrodes, the unit reacts by energizing a form C changeover relay contact.
The module is voltage and temperature stabilized and guarantees a defined switching characteristic.
It can be used for on/off control or minimum/maximum control. A signal delay feature is available and is adjustable between 0.5 s and 10 s .
This module can also monitor the field circuit for lead breakage (LB). LB is indicated by a red LED. If LB monitoring is selected, output II serves as the fault signal output; otherwise, it will follow the function of output I.

Connection

Technical Data

General specifications

Signal type

Supply

Connection	terminals 14,15	
Rated voltage	U_{r}	$103.5 \ldots 126 \mathrm{~V} \mathrm{AC}, 45 \ldots 65 \mathrm{~Hz}$
Rated current	I_{r}	12 mA
Power consumption		$<1.2 \mathrm{~W}$
Input		
Connection side	field side	
Connection	terminals 1 (mass), 2 (min), 3 (max)	

Technical Data

Control input

Response sensitivity

Output

Connection side
Connection
Switching power
Output
Contact loading
Time constant for signal damping

Galvanic isolation

Input/Output
Input/power supply
Output/power supply
Indicators/settings
Display elements
Control elements

Configuration
Labeling
Directive conformity
Electromagnetic compatibility
Directive 2014/30/EU
Low voltage
Directive 2014/35/EU
Conformity
Electromagnetic compatibility NE 21:2006
Degree of protection
Ambient conditions
Ambient temperature

Mechanical specifications

Degree of protection
Connection
Mass
Dimensions
Mounting

control side

relay
$0.5 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$

LEDs
DIP switch
potentiometer
via DIP switches
via potentiometer

EN 61010-1:2010

IEC 60529:2001

IP20
approx. 150 g

Supplementary information
min./max. control system: terminals 1, 2, 3 on/off control system: terminals 1, 3
$1 \ldots 150 \mathrm{k} \Omega$, adjustable via potentiometer
terminals $7,8,9 ; 10,11,12$
max. $192 \mathrm{~W}, 2000$ VA
$253 \mathrm{~V} \mathrm{AC/2} \mathrm{A/cos} \phi>0.7 ; 40 \mathrm{~V}$ DC/2 A resistive load
reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$ reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$ reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$
space for labeling at the front

EN 61326-1:2013 (industrial locations)
$-20 \ldots 60^{\circ} \mathrm{C}\left(-4 \ldots 140^{\circ} \mathrm{F}\right)$
extended ambient temperature range up to $70^{\circ} \mathrm{C}\left(158{ }^{\circ} \mathrm{F}\right)$, refer to manual for necessary mounting conditions
screw terminals, max. $2.5 \mathrm{~mm}^{2}$
$20 \times 119 \times 115 \mathrm{~mm}(0.8 \times 4.7 \times 4.5$ inch $)(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$, housing type B2
on 35 mm DIN mounting rail acc. to EN 60715:2001

Observe the certificates, declarations of conformity, instruction manuals, and manuals where applicable. For information see www.pepperl-fuchs.com.

Assembly

Matching System Components

K-DUCT-GY Profile rail, wiring comb field side, gray

Accessories

KF-ST-5GN Terminal block for KF modules, 3-pin screw terminal, green

KF-CP Red coding pins, packaging unit: 20×6

Application

The device is equipped with lead breakage detection (current free relay in event of failure). For this purpose, the enclosed $430 \mathrm{k} \Omega$ resistance must be switched between the maximum and reference electrode. This function can be deactivated by DIP switches.

Configuration

DIP switch function on side of device

Switches	Position	Function
1	Off On	open circuit current closed circuit current
2	Off On	LB deactivated LB activated

Switch 3	Switch 4	Time constant for signal damping
Off	Off	0.5 s
Off	On	2 s
On	Off	5 s
On	On	10 s

- Open circuit current principle: In open circuit current principle the relay becomes active when the limit is reached.
- Closed circuit current principle: In closed circuit current principle, the relay is activated when power is applied. The relay is deactivated when the limit is reached.

